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1 Introduction

This paper focuses on the theory underlying the aggregate production function and shows how

labor-market policies can affect this function in general and the level of measured Total Factor

Productivity (TFP) in particular. Specifically, I construct an aggregative model of TFP in the

spirit of Houthakker (1955-1956): the basic idea is to derive an aggregate production function

by aggregating across active production units. In equilibrium, the levels of output, inputs and

TFP as well as the shape of the aggregate relationship between them depend on individual

production decisions — such as which production units remain active in the face of idiosyncratic

shocks — and these decisions are in turn affected by policies. So the model can be used to study

the precise interaction between all these variables explicitly.

In the model proposed here, policy affects TFP because the latter is related to the average

productivity of the units which are active, and policy induces changes in the productivity

composition of active units. By distorting the way in which individual production units react

to the economic environment, labor-market policies can make an economy exhibit a low level of

TFP. As a result, two economies may exhibit different levels of TFP even if production units in

both have access to the same technology and are subject to identical shocks. In this sense the

determinants of TFP levels analyzed here are different from the barriers to technology adoption

of Parente and Prescott (1999, 2000).

At a theoretical level the paper also shows that, under some conditions, a standard search

model of the labor market — with its underlying meeting frictions and simple fixed-proportions

micro-level production technologies — can generate an aggregate production function that looks

just like the one implied by the textbook neoclassical model of growth in which firms have

access to a standard constant-returns Cobb-Douglas production technology. So in this sense,

from the perspective of aggregate output, inputs and productivity, the neoclassical and the

search paradigms can seem quite close. However, the search model implies a different mapping

between the parameters of the aggregate production technology and observables, and this can



have significant implications for growth accounting.

At a conceptual level, the paper is related to the vast literature that documents and tries

to explain differences in TFP levels across countries. Examples include Hall and Jones (1999),

Klenow and Rodríguez-Clare (1997), and Parente and Prescott (2000). This body of work

has established that differences in TFP account for a large fraction of the variation in output

per worker between the world’s richest and poorest countries. And in terms of explanations,

it shares the basic idea that the level of an economy’s TFP is determined by the quality of

its “institutions.” Hall and Jones (1999) argue that differences in observed TFP are driven

by differences in the institutions and government policies they collectively refer to as “social

infrastructure.” Corrupt government officials, severe impediments to trade, poor contract en-

forcement and government interference in production are some of their examples of bad “social

infrastructures” that could lead to low levels of TFP.

Parente and Prescott (1994) propose that some countries have lower TFP than others be-

cause their process of technology adoption at the micro level is constrained by “barriers to

riches.” These barriers are essentially any institution or government policy that increases the

cost of technology adoption. From that perspective, this paper can be thought of as adding

labor market policies to the list of “institutions” that affect the level of TFP.1 The paper is

also related to the large body of work that tries to account for differences in macroeconomic

performance — usually employment rates and labor productivity — with differences in labor mar-

ket policies — typically unemployment benefits or employment protection. Examples include

Hopenhayn and Rogerson (1993), Marimon and Zilibotti (1999), Millard and Mortensen (1997),

Restuccia and Rogerson (2004) and Veracierto (2001).

1Unlike Hall and Jones (1999), Parente and Prescott (2000), or Acemoglu and Zilibotti (2001), this paper
is not about development economics, in the sense that it does not attempt to explain why some countries are
30 times richer than others in per-capita terms. The emphasis on labor market institutions makes the analysis
more relevant to study productivity differences among a relatively homogeneous set of countries (or sectors). For
example, Hall and Jones (1999) and Klenow and Rodríguez-Clare (1997) report productivity differences among
OECD countries, with France and Italy having a higher and Germany a much lower level of TFP relative to the
United States. These obserations may seem striking, especially given the conventional wisdom that France and
Italy have distorted labor markets vis-á-vis the United States. These are examples of the types of questions that
the model developed here is suited to address.
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The rest of the paper is organized as follows. Section 2 lays out the model. The equilibrium

is characterized in Section 3, and the classical aggregation result of Houthakker (1955-1956) is

extended to the dynamic equilibrium search setup in Section 4. This section also shows how,

when aggregate inputs are correctly measured, the level of TFP depends on all the character-

istics of the labor market summarized by the job-destruction decisions. Section 5 introduces

four policies: employment subsidies, hiring subsidies, firing taxes and unemployment benefits,

and studies their effects on TFP. Section 6 extends the basic model to the case of serially cor-

related shocks and state-dependent destruction rates, generalizes the main aggregation result,

and elaborates on how the observed level of TFP is affected by the different ways of measuring

aggregate inputs that can be found in the literature. Section 7 concludes. All propositions are

proved in Appendix A. Additional extensions and technical results are collected in Appendix

B.

2 The Model

The labor market is modeled as in Mortensen and Pissarides (1994).2 Time is continuous, and

the horizon infinite. There is a continuum of infinitely lived agents of two types: workers and

firms. Both types are risk-neutral. The size of the labor force is normalized to unity while

the number of firms will be determined endogenously by free entry. Workers derive utility

from consumption and — in one of the specifications developed below — also suffer disutility

from working. Each firm has a single job that can be either filled or vacant and searching.

Similarly, workers can be either employed by a firm or unemployed and searching. No new offers

arrive while an agent is in a relationship. I abstract from capital accumulation and assume an

exogenous rental rate of capital, c. The aggregate stock of capital, K, will be determined by

2There are at least three reasons for carrying out the analysis in a search and matching framework. First, as
will be discussed in Section 5, the labor-market policies considered will have testable implications not only for the
level of TFP but also for the unemployment rate and the job-creation and destruction rates. Second, an explicit
treatment of unemployment is relevant because — as will be shown in Section 6 — the unemployment rate will
affect empirical measures of TFP for the ways of measuring aggregate inputs that can be found in the literature.
And finally, this framework has been used extensively to analyze the effects of similar policies on many other
aggregate labor-market outcomes (see Ljungqvist and Sargent [2000], Pissarides [2000] and references therein).
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demand.3

Assume meeting frictions can be represented by a function m (u, v) that determines the

instantaneous number of meetings as a function of the numbers of searchers on each side of the

market, namely, unemployed workers u and vacancies v. Suppose m exhibits constant returns

to scale and is increasing in both arguments. Let q (θ) denote the (Poisson) rate with which a

vacancy contacts an unemployed worker, where θ = v/u. For some of the existence proofs it

will also be useful to assume limθ→0 q (θ) =∞.4

Each firm has access to a technology f (x, n, k) that combines the hours supplied by the

worker it employs, n, and capital, k, to produce a homogeneous consumption good. The match-

specific level of technology is indexed by x. I assume that

f (x, n, k) = xmin (n, k) (1)

and interpret k as the firm’s capacity or scale of operation. So output is linear in hours but is

bounded above by the stock of capital the firm is operating with. The convention is that the

technology is such that all projects have the same scale of operation k. Every firm has to rent

and put in place k units of capital to be able to engage in search while vacant and to produce

while filled.5 This captures the notion that hours are a fully flexible factor while capital is

relatively fixed. Firms rent capital from a competitive market at flow cost c.

Match productivity is stochastic and indexed by the random variable x. The process that

changes the productivity is Poisson with finite arrival rate λ. When a match of productivity x

suffers a change, the new value x0 is a draw from the fixed distribution G (·). So the productivity
process is persistent (since λ <∞) but — conditional on change — it is independent of the firm’s

3This is the usual “small open economy” assumption. The model abstracts from saving and accumulation
because the focus here is on isolating the effects of labor-market policies on the level of TFP. But even in
the context of trying to explain income differences, Prescott (1998) and Parente and Prescott (2000) conclude
that one cannot rely on policies that cause differences in saving rates, as they do not vary systematically with
countries’ incomes.

4Note that q (θ) = m (1/θ, 1) and hence q0 < 0. The probability a worker contacts a vacancy in a short time
interval is θq (θ) and is increasing in θ.

5The idea is that in order to search, the firm must have borrowed some capital, say, to set up a plant, and
plants come in a single size, k.
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previous state.6 The Poisson process and the productivity draws are iid across firms, and there

is no aggregate uncertainty. The focus will be on steady-state outcomes.

In the next section I will show that there is a unique productivity level Rt such that active

matches dissolve if productivity ever falls below that level and new matches form only if their

initial productivity is at least Rt.7 Let Ht (x) denote the cross-sectional productivity distribu-

tion of active matches. That is, Ht (x) is the fraction of matches producing at productivities

x or lower at time t. The time path of (1− ut)Ht (x), the number of matches producing at

productivities x or lower at time t, is given by8

d

dt
[(1− ut)Ht (x)] = λ (1− ut) [1−Ht (x)] [G (x)−G (Rt)] + θq (θ)ut [G (x)−G (Rt)]

−λ (1− ut)Ht (x)G (Rt)− λ (1− ut)Ht (x) [1−G (x)]

−δ (1− ut)Ht (x) .

The first term accounts for the matches with productivities above x that get innovations below

x but above Rt. The newly formed matches that start off with productivities no larger than x

are in the second term. The third term represents the matches in the interval [Rt, x] that get

shocks below Rt and are destroyed. The fourth term accounts for those matches in the same

interval that “move up” by virtue of having drawn productivities larger than x. Let δ denote

the parameter of an independent Poisson process that causes separations for reasons unrelated

to the match-specific productivity shocks. Then the last term accounts for the matches in the

6This is the process used by Mortensen and Pissarides (1994). For reasons that will become clear shortly,
Section 6 generalizes the model by specifying that when a match of productivity x suffers a change, the new
value x0 is a draw from the fixed distribution G (·|x). If G (·|x1) < G (·|x0) when x0 < x1, then apart from being
persistent, the idiosyncratic shocks are also positively correlated through time.

7Mortensen and Pissarides (1994) work with a bounded support and assume new matches start off with the
highest productivity. I relax these assumptions and treat active and new matches symmetrically. In the model
considered here, the initial productivity of a match is a nondegenerate random variable drawn from the same
distribution as the innovations to active matches.

8The fact that active matches will form and continue only for productivities at least as large as Rt means
that Ht (Rt) = 0. Thus the derivation focuses on x ≥ Rt.
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interval [Rt, x] that are destroyed for exogenous reasons.9 Imposing steady states,

H (x) =

∙
λ

δ + λ
+

θq (θ)u

(δ + λ) (1− u)

¸
[G (x)−G (R)] .

In addition, the steady-state unemployment rate is

u =
δ + λG (R)

δ + λG (R) + θq (θ) [1−G (R)]
. (2)

Using this expression, the steady-state cross-sectional productivity distribution becomes

H (x) =
G (x)−G (R)

1−G (R)
. (3)

Next, I consider the problems faced by a worker and a firm. The value of unemployment

and employment to a worker are denoted U and W (x), respectively, and solve

rU = b+ θq (θ)

Z
max [W (z)− U, 0] dG (z) (4)

rW (x) = w (x) + λ

Z
max [W (z)− U, 0] dG (z)− (δ + λ) [W (x)− U ] , (5)

where r is the discount factor, b ≥ 0 denotes a worker’s flow income while unemployed, and
w (x) is the wage earned by a worker employed in a match of productivity x. This formulation

assumes the worker suffers no disutility from work (but see Appendix B).

Firms can be either vacant and searching or filled. The problem of a searching firm is

summarized by

rV = −ck + q (θ)

Z
max [J (z)− V, 0] dG (z) , (6)

where V is the asset value of a vacancy and J (x) the asset value of a filled job. Letting π (x)

denote flow profit, J (x) satisfies

rJ (x) = π (x) + λ

Z
max [J (z)− V, 0] dG (z)− (δ + λ) [J (x)− V ] , (7)

where π (x) = xmin (n, k) − w (x) − ck − φn − C (x, φ)k. Instantaneous profit is the residual

output after the wage w (x) and all other costs of production have been paid out. There are

9Section 6 extends the analysis to the case in which the rate δ is a decreasing function of the idiosyncratic
productivity parameter x. The reasons why this extension may be worth exploring are discussed below.
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three such costs in this formulation: the rental on capital, ck; a variable cost, φn, that can

be managed by varying hours; and a fixed cost C per unit of capital.10 The variable cost

φn and the fixed cost Ck are introduced to allow for the possibility of “labor hoarding” and

underutilization of capital, two pervasive features of the data. In the presence of these costs, for

some parametrizations it will be possible that at low productivity realizations the firm chooses

to keep the worker employed despite requiring that she supplies zero hours. In Section 4 I will

show that this type of labor hoarding has interesting aggregate implications when it occurs in

equilibrium.

To fix ideas, one can think of φ as the cost of electricity, for instance, with electricity usage

being proportional to hours worked. Alternatively, in Appendix B I show how to modify (5) and

π (x) to get an equivalent formulation in which φn is the worker’s disutility from supplying n

hours to her employer. Either way, the key observation is that φ > 0 is necessary for the model

to display the type of labor hoarding described above. Intuitively, if the marginal product

of labor, x, is lower than its marginal cost, φ (expressed either in terms of resources to the

firm under the first interpretation or disutility to the worker under the second), then efficiency

will require the match to set n = 0: the worker should not supply hours to the firm. Under

these circumstances, whether the firm and the worker should choose to preserve the match is a

different matter. One possibility is that the instances in which the firm-worker pair sets n = 0

are also the cases in which the pair chooses to dissolve the match. Or alternatively, one could

imagine the pair may choose n = 0 but decide to preserve the match anticipating that the low

realization of the idiosyncratic shock may be reversed soon. In the first scenario there is no

hoarding. In the latter there is. The fixed cost C introduced in this section makes it possible

for the second scenario to arise in the equilibrium with endogenous separations.

Notice that if C = φ = 0 then the model reduces to the standard setup of Mortensen and

Pissarides (1994). For this special case, all the results on how labor market policies affect the

10The cost C is fixed in the sense that the firm can only avoid it by shutting down, but — as the notation
indicates — it may depend on the realization of the idiosyncratic shock and possibly also on the parameter φ.
More on this below.
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level of TFP still go through even though the equilibrium does not exhibit hoarding. In this

sense, neither of these costs is essential. However, in the presence of the variable cost φ and

the fixed cost C the model is in addition also able to deliver equilibrium hoarding. And as it

turns out, this has interesting implications for how the aggregate production function looks.

Since the fixed cost C is perhaps the only nonstandard element of the model, several remarks

are in order. First, at a technical level, incorporating a fixed-cost specification that is decreasing

in the shock x is introduced in this section as a simple device to avoid a “flat spot” in flow

profit which would otherwise carry over to the value functions.11 Second, in Section 6 I drop the

fixed cost and redo the analysis in a version of the model where the draws of the idiosyncratic

shock are correlated over time. In another extension explored in Section 6, I again drop the

fixed cost and show that the key insights also go through in a version of the model where

the destruction rate δ is decreasing in the productivity shock. The point I want to stress

here is that these alternative specifications seem natural (perhaps even more so than the usual

benchmark in which the shocks hitting the match are independent of its state) and are able

to deliver hoarding without the fixed cost C.12 Given all this and for expositional purposes, I

will — for the time being — use a particularly convenient specification for the fixed cost, namely,

C (x, φ) = max (φ− x, 0).13

3 Equilibrium

I follow the bulk of the search literature by letting β ∈ [0, 1) and assuming the instantaneous
wage w (x) and labor supply n solve

max [W (x)− U ]β [J (x)− V ]1−β

11See Appendix B, and in particular the discussion around equation (46) for more on this.
12 Intuitively, flow profit has a “flat spot” in both these alternative formulations, but the serially correlated

shocks ensure that the value functions do not inherit this flat spot.
13This formulation is convenient because it will imply that the flow profit is affine and strictly increasing in

x. Since — even accepting the presence of a fixed cost — this particular formulation may seem a bit contrived,
in Appendix B I redo the whole analysis with a more general specification for the fixed cost and show that
∂C(x,φ)

∂x < 0 is all that is really needed. But again, see Section 6 for alternative specifications that do not rely on
firms having to bear any fixed cost C.
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at all times. The optimal choice of hours is

n (x) =

½
k if φ < x
0 if x ≤ φ,

(8)

and substituting it into the flow profit function gives π (x) = (x− φ− c)k − w (x) for all x.

The first-order condition for the instantaneous wage w (x) is

(1− β) [W (x)− U ] = β [J (x)− V ] . (9)

Letting S (x) = J (x)+W (x)−U −V denote the surplus from a match, notice that (9) implies

J (x) = (1− β)S (x) and W (x)− U = βS (x). These together with (4), (5) and (7) imply

(r + δ + λ)S (x) = (x− φ− c)k − rU + λ

Z
max [S (z) , 0] dG (z) ,

where

rU = b+
β

1− β
kcθ. (10)

In deriving (10) I have already imposed that free entry of firms will make rV = 0 in equilibrium.

Since S0 (x) = k
r+δ+λ > 0, there exists a unique R such that S (x) > 0 iff x > R. Hence a firm-

worker pair destroys an existing match and chooses not to form a new match if it draws a

productivity x < R.14 Using this reservation strategy, the surplus can be written as

(r + δ + λ)S (x) = (x− φ− c)k − rU + λ

Z
R
S (z)dG (z) . (11)

For completeness, (9) and the value functions can be combined to obtain expressions for in-

stantaneous wages and profit:

w (x) = β (x− φ− c) k + (1− β) rU (12)

π (x) = (1− β) [(x− φ− c) k − rU ] . (13)

Intuitively, the wage is a weighted average of output (net of the rental on capital and the

variable and fixed costs) and the worker’s reservation wage.
14Notice that match formation and destruction are privately efficient. Moreover, they are also consensual in

the sense that by (9), J (x) > 0 iff W (x) − U > 0; so the firm wants to destroy the match iff the worker wants
to quit.
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Next, I characterize the job-creation and destruction decisions as summarized by θ and R,

respectively. Evaluating (11) at x = R,

λ

Z
R
S (z)dG (z) = rU − (R− φ− c)k.

Notice that since the expected capital gain on the left-hand side is positive, at x = R net output

is smaller than the worker’s reservation wage. Thus (12) and (13) imply that w (R) < rU and

π (R) < 0: workers and firms sometimes tolerate instantaneous payoffs below those they could

get by separating, in anticipation of future productivity improvements.15 Substituting this

simpler expression for the expected capital gain term into (11) gives

S (x) =
x−R

r + δ + λ
k. (14)

Evaluating (11) at x = R and using (14) to substitute S (·) yields what is usually referred to
as the job-destruction condition:

R− φ− c−
µ
b

k
+

β

1− β
cθ

¶
+

λ

r + δ + λ

Z
R
(x−R) dG (x) = 0. (15)

As is standard, the destruction decision is independent of scale if b is. The natural inter-

pretation of b is that it is unemployment insurance income. Along these lines, if one lets

b = τ bEG [w (x) |x ≥ R], where τ b ∈ [0, 1) is the replacement rate, then b = b̂k, with

b̂ =
τ bβ [x̃ (R)− φ− c+ cθ]

1− (1− β) τ b
,

and x̃ (R) ≡ EG [x|x ≥ R] = [1−G (R)]−1
R
R xdG (x). Under this specification, b is linear in k

so (15) is independent of k and becomes

R− τbβx̃(R)
1−(1−β)τb −

(1−τb)(φ+c)
1−(1−β)τb −

βcθ
(1−β)[1−(1−β)τb] +

λ
r+δ+λ

Z
R
(x−R) dG (x) = 0.

In what follows I will always abstract from scale effects caused by unemployment income b by

assuming it is a fraction of the average going wage.
15This feature of the model is a consequence of the costly and time-consuming meeting process, as noted by

Mortensen and Pissarides (1994).
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Substituting the equilibrium condition rV = 0 in (6) implies that

(1− β)

Z
R
S (x)dG (x) =

ck

q (θ)
.

That is, the expected profit from a filled job equals the expected hiring cost in an equilibrium

with free entry. Using (14) to substitute S (·) out of this expression yields what is often referred
to as the job-creation condition:

1− β

r + δ + λ

Z
R
(x−R) dG (x) =

c

q (θ)
. (16)

The job-creation and destruction conditions jointly determine R and θ, and under the

maintained assumptions they are independent of scale, k.16 For given c and φ, an equilibrium

is a vector [θ,R,H,U,w, u,K] such that (θ,R) jointly solve (15) and (16); given (θ,R), H

satisfies (3); U is given by (10); w is given by (12); and u is given by (2). In addition, the

market for capital services should clear, so the aggregate supply of capital K must satisfy

K = [1− (1− θ)u] k, where the right-hand side is the total demand for capital (coming from

both matched and unmatched firms). Note that in parametrizations that result in R < φ, the

capital and workers in matches with realizations in [R,φ) remain employed but are not engaged

in production. The firms in these states have excess capacity and hoard labor. The following

section provides a sharper characterization of aggregate outcomes for a particular distribution

of idiosyncratic shocks.

4 Aggregation

Let Ke denote the capital in place at all the firms with filled jobs; that is, Ke = (1− u)k or

equivalently,

Ke =
1− u

1− (1− θ)u
K. (17)

Aggregate output, Y , and the total number of hours worked, N , are given by

Y = (1− u)

Z
µ
f [x, n (x) , k] dH (x)

16See Lemma 1 in Appendix B for conditions under which the pair (θ,R) that solves (15) and (16) exists and
is unique.
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and N = (1− u)
R
µ n (x) dH (x), respectively, with µ ≡ max (R,φ). Using (1) and (8),

Y (Ke, µ) = [1−H (µ)]KeEH (x|x ≥ µ) (18)

N = [1−H (µ)]Ke, (19)

where EH (x|x ≥ µ) = [1−H (µ)]−1
R
µ xdH (x). Intuitively, since every firm-worker pair is

setting hours either to zero or to full capacity k, the aggregate number of hours worked is just

equal to the fraction of firm-worker pairs who engage in production times the total capital

stock in filled jobs. Similarly, aggregate output equals the number of active units of capital,

[1−H (µ)]Ke, weighted by their average productivity.17 Following Houthakker (1955-1956),

one could imagine solving (19) for the aggregate “labor demand” by active firms, µ (Ke,N), and

then substituting it in (18) to obtain Y [Ke, µ (Ke,N)]. Hereafter, I use F (Ke,N) to denote

Y [Ke, µ (Ke, N)] to simplify notation and stress the fact that this is the economy’s “aggregate

production function.” Even for an arbitrary H, the aggregate production function exhibits

constant returns to scale. To see this, notice that µ (Ke, N) is homogeneous of degree zero and

hence (18) indicates that for any ζ > 0, F (ζKe, ζN) = ζF (Ke,N).18

Now suppose idiosyncratic shocks are draws from a Pareto distribution with parameters ε

and α, namely,

G (x) =

½
0 if x < ε
1− ¡ εx¢α if ε ≤ x,

(20)

17As mentioned previously, Mortensen and Pissarides (1994) assume that G has support [0, 1] and that all new
matches start off with productivity 1. So, with δ = 0, aggregate output in their model evolves according to

Ẏ = θq (θ)uk − λY + λ (1− u) k

Z 1

µ

xdG (x) .

Replacing (1− u) k with Ke, steady state output is Y = θq(θ)uk
λ + [1−H (µ)]KeEH (x|x ≥ µ), which looks like

(18) except for the first term. Assuming that the initial productivity of a new match is a random draw from G —
just as the innovations to the productivity of ongoing matches — allows for a density G with unbounded support.
In addition, this alternative assumption smoothes aggregate output by getting rid of the “spike” θq (θ)ukλ−1.
18Also, from (18) one sees that F2 (Ke, N) = −µ2 (Ke, N)KeµdH (µ), and from (19) that

−µ2 (Ke, N)KedH (µ) = 1. Thus F2 (Ke, N) = µ. So the marginal product of labor in the aggregate pro-
duction function is equal to the marginal product of the least efficient unit of labor employed in production.
I owe this argument to Erzo G. J. Luttmer. At this point it may be useful to stress that in this context, by
an “aggregate production function” I mean an equilibrium relationship between measured aggregate inputs and
output. The fact that this is an equilibrium relationship implies that in general, a change in parameters (e.g.,
unemployment benefits) will typically affect N , Ke, µ (., .) and Y (., .).

12



where ε > 0 and α > 2.19 Then, provided R ≥ ε, 1−G (R) =
¡
ε
R

¢α and hence G (x)−G (R) =

(ε/R)α [1− (R/x)α] for any x ≥ R. Substituting these expressions in (3) one sees that the

steady state productivity distribution of active matches is

H (x) =

½
0 if x < R

1− ¡Rx ¢α if R ≤ x.
(21)

This is a Pareto distribution with parameters R and α. Using (21), 1 − H (µ) = (Rµ )
α and

EH (x|x ≥ µ) = α
α−1µ, so the aggregates (18) and (19) specialize to Y (Ke, µ) =

α
α−1R

αµ1−αKe

andN = (R/µ)αKe. Inverting the latter to get the “aggregate labor demand” µ = (Ke/N)
1/αR

and substituting it in the former yields

F (Ke, N) = AKγ
eN

1−γ, (22)

where

A =
R

1− γ
(23)

and γ ≡ 1/α. This extends the classic aggregation result of Houthakker (1955-1956).20 The
factor A is what macroeconomists normally refer to as TFP. Its level depends on α, a parameter

of the primitive distribution of productivity shocks, as well as on all the characteristics of the

labor market as summarized by the destruction decision R.

Notice that F expresses output as a function of the aggregate number of hours worked,

N , and the total amount of capital hired by firms with filled jobs, Ke. One can also express

output as a function of the aggregate capital stock, K, simply by substituting (17) in (22) to get

19This distribution has mean x̄ = α
α−1ε and variance equal to

x̄
(α−2)(α−1)ε. Assuming α > 2 ensures both are

well-behaved.
20Houthakker performed the aggregation over production units that employ two variable factors and face

capacity constraints due to a fixed (unmodelled) factor. Here I have assumed each production unit employs a
single variable factor (labor) as well as capital. Capital is chosen before engaging in search and then remains
fixed, hence playing the role of the fixed factor constraining output at the time employment and production
decisions are made. This formulation delivers an aggregate production function with constant returns to scale.
In contrast, the setup used by Houthakker generates a function of the variable inputs only and it exhibits
diminshing returns to scale. Another relevant difference is that the shift parameter in Houthakker’s production
function is solely a function of the parameters in the primitive productivity distribution. But here, decisions
can shift the aggregate production function. In a different context, Jones (2004) also obtains a Cobb-Douglas
aggregate when the underlying heterogeneity is Pareto.
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F̂ (K,N) = ÂKγN1−γ, where Â ≡
h

1−u
1−(1−θ)u

iγ
A. (More on this in Section 6.2.) The aggregate

production function is Cobb-Douglas despite fixed proportions in the micro-level technologies.

This results whenever utilization is imperfectly measured, namely, when not all of the capital

stock included as an argument in the aggregate production function is actually being used in

production.21 Since having firm-worker pairs that sometimes choose to be inactive affects the

shape of the aggregates, I next verify that it is indeed possible for the equilibrium to exhibit

this property.

With G given by (20), (15) and (16) specialize toh
1− τbβα

(α−1)[1−(1−β)τb]
i
R− (1−τb)(φ+c)

1−(1−β)τb −
βcθ
1−β +

λεαR1−α
(α−1)(r+δ+λ) = 0 (24)

εαR1−α

α− 1 −
(r + δ + λ) c

q (θ) (1− β)
= 0. (25)

Lemma 2 in Appendix B provides conditions that ensure a unique equilibrium exists for this

formulation. Since the purpose of the remainder of this section is merely to show that hoarding

may arise in equilibrium, I set τ b = 0 to ease the algebra.22 Differentiating (24) and (25),

∂R

∂φ
= (r+δ+λ)η(θ)

βθq(θ)[1−G(R)]+(r+δ+λ)η(θ)
n
1−λ[1−G(R)]

r+δ+λ

o > 0 (26)

and
∂θ

∂φ
=
− (1− β) θq (θ) [1−G (R)]

(r + δ + λ) η (θ) c

∂R

∂φ
< 0,

where 1−G (R) = (ε/R)α and η (θ) ≡ −θq0 (θ) /q (θ). An increase in φ has no direct effect on

the job-creation condition, and it shifts the job-destruction condition up in θ-R space. This

increases the equilibrium value of R and decreases the equilibrium value of θ. Combining (24)

21To see this, notice that if there is no hoarding in equilibrium (i.e., if µ = R) then N = Ke and F (Ke, N) =
AKe. Similarly, if there is hoarding but utilization is perfectly measured, then aggregate output is again linear
in the relevant capital stock. Explicitly, let Kp denote the capital stock being used in production, that is,
Kp = [1−H (µ)]Ke. Then it follows from (18) that Y = A00Kp, with A00 ≡ EH (x|x ≥ µ). So anything less than
perfect measurement of capital utilization together with some degree of hoarding cause the aggregate to look
Cobb-Douglas in capital and hours despite fixed proportions in the micro production functions.
22Just as for the existence and uniqueness results in Lemma 1 and Lemma 2 in Appendix B, the results that

follow will also hold for replacement rates τ b that are not too big. The algebra gets cumbersome with τb > 0
because under this specification unemployment income b is a function of the equilibrium distribution of wages
earned.
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and (25), one sees that the sign of φ − R is the sign of λ/q (θ) − [1− (1− θ)β]. So at low

productivity realizations, the firm is more likely to hoard labor than to break the match when

λ is large (and hence the option value of keeping a match is large) and when q is small (and hence

the expected cost of hiring a new worker is high). Market tightness θ enters the expression with

an ambiguous sign because on the one hand a large θ makes hoarding more likely by increasing

the expected recruiting cost; but on the other, through its effect on the worker’s reservation

wage, it also increases the value of her threat point in the wage bargain, which makes keeping

an unproductive worker employed more costly and hoarding less likely. In fact, the latter effect

disappears if the worker has no power in the wage bargain (i.e., if β = 0). Next, I derive a

condition on parameters that is sufficient for R < φ in equilibrium.

Figure 1: Destruction decision as a function of the variable cost.

Let θ∗ε be defined by q (θ∗ε) =
(α−1)(r+δ+λ)c

(1−β)ε and φε =
h
1 + λ

(α−1)(r+δ+λ)
i
ε−

³
1 + β

1−β θ
∗
ε

´
c.

Then if φ = φε, the versions of (24) and (25) with τ b = 0 are solved by θ (φε) = θ∗ε and

R (φε) = ε. Notice that if R (φε) = ε < φε, then there is a nondegenerate interval [φε, φR) such

that R (φ) < φ iff φ ∈ [φε, φR). An example of the function R (φ) is illustrated in Figure 1.
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So a sufficient condition for the equilibrium to exhibit hoarding for at least some range of

the parameter φ is that φε − ε > 0, or equivalently, that T (λ, ζ) > 0, where

T (λ, ζ) ≡ λε

(α− 1) (r + δ + λ)
−
µ
1 +

β

1− β
θ∗ε

¶
c.

The parameter ζ summarizes the efficiency of matching, with the property that ∂m (u, v) /∂ζ >

0 and hence that ∂q (θ) /∂ζ > 0 for all θ. Figure 2 plots the boundary T (λ, ζ) = 0 in λ-ζ space.

Figure 2: Range of parameters for which there is hoarding.

The condition φε− ε > 0 is satisfied for the values of the parameters λ and ζ that lie below

the boundary.23 Intuitively, the parameter restriction that makes hoarding possible holds for

relatively large λ (i.e., when bad shocks are very transitory) and relatively low ζ (i.e., when the

search process needed to replace the worker is very costly). Having characterized the relevant

properties of the equilibrium, the following section studies the effects of labor-market policies

on the level of TFP.
23Note that θ∗ε goes to zero as ζ goes to zero. So T (λ, 0) = 0 iff λ = λ0, where λ0 ≡ c(α−1)(r+δ)

ε−c(a−1) is the point
at which the boundary intercepts the horizontal axis in Figure 2. Formally, this boundary is upward-sloping
because ∂T

∂ζ = − βθ∗ε
1−β

∂θ∗ε
∂ζ < 0 and ∂T

∂λ =
ε(r+δ)

(α−1)(r+δ+λ)2 − bc2(α−1)
(1−β)ε(1−β)q0(θ∗ε)

> 0. The equilibrium may or may not

exhibit hoarding for parametrizations that lie above the boundary.
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5 Labor-Market Policies and the Level of TFP

This section considers the effects of four policies: employment subsidies, hiring subsidies, fir-

ing taxes and unemployment benefits. I follow Pissarides (2000) and model the subsidies as

transfers from the government to the firm and the firing tax as a payment from the firm to

the government.24 The value function W (x) is still given by (5), while (4), (6) and (7) now

generalize to

rU = b+ θq (θ)

Z
max [Wo (z)− U, 0] dG (z)

rV = −ck + q (θ)

Z
max [Jo (z) + τhk − V, 0] dG (z)

rJ (x) = π (x) + τek + λ

Z
max [J (z)− V + τfk, 0] dG (z)− (δ + λ) [J (x)− V + τfk] .

The policy variables are τh (hiring subsidy), τe (employment subsidy), τf (firing tax) and b

(unemployment benefit). Note that all payments are assumed to be proportional to the firm’s

size, as measured by k.25 There are two reasons why the bargaining situation faced by a firm

and a worker when they first meet and are still considering whether to form a match is different

from the one they face every instant after having agreed to form the match. The first is that in

the initial bargain there is a one-time hiring subsidy at stake. The second is that at that point

the firm is not yet “locked in” by the firing tax. I use wo (x) to denote the wage that solves the

initial bargain and w (x) to denote the subsequent wage. Accordingly, Jo (x) and Wo (x) are

the value functions for the firm and worker in the instant they form a new match and satisfy

Wo (x)−W (x) = J (x)− Jo (x) = wo (x)−w (x).

The wages wo (x) and w (x) are characterized by

β [Jo (x) + τhk] = (1− β) [Wo (x)− U ] and β [J (x) + τfk] = (1− β) [W (x)− U ] ,

24 I assume that upon separation the firm must pay the firing tax to the government because in the present
setup, firing taxes would be completely neutral under the alternative scheme where the firm compensates the
fired worker directly.
25This assumption, borrowed from Pissarides (2000), is useful here because it ensures that policies introduce no

scale effects into the job-creation and destruction decisions. Also, to keep the analysis simple, the government’s
financing constraints will be ignored. A natural extension would be requiring the government to run a balanced
budget. A simple example of a scheme which is self-financing in the steady state is τf = τh and τb = τ e = 0.
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where the equilibrium condition V = 0 has already been imposed. Letting So (x) = Jo (x) +

Wo (x)+τhk−U and S (x) = J (x)+W (x)+τfk−U be the initial and the subsequent surpluses,
respectively, the first-order conditions imply that Wo (x)− U = βSo (x), W (x)− U = βS (x),

Jo (x) + τhk = (1− β)So (x) and J (x) + τfk = (1− β)S (x). Combining these with the value

functions gives

(r + δ + λ)S (x) = (x− φ− c) k + τek + rτfk − rU + λ

Z
max [S (z) , 0] dG (z) ,

with rU as in (10). Since S0 (x) > 0, there is a unique R such that S (x) ≥ 0 iff x ≥ R. Using

this reservation property, the surplus of an ongoing match can be written as

(r + δ + λ)S (x) = (x− φ− c)k + τek + rτfk − rU + λ

Z
R
S (z)dG (z) , (27)

a natural generalization of (11). One can work with the value functions and the first-order

conditions of the Nash problem to derive expressions for wages and profit.26 Evaluating (27)

at x = R implies

λ

Z
R
S (z)dG (z) = rU − [(R− φ− c)k + τek + rτ fk] ,

and substituting this back into (27) yields (14). Using (14) to substitute S (z) out of (27),

evaluating at x = R and using (10) produces the job-destruction condition:

R− φ− c+ τe + rτf −
µ
τ b +

β

1− β
cθ

¶
+

λ

r + δ + λ

Z
R
(x−R) dG (x) = 0.

Increases in the employment subsidy and the firing tax reduce R for given θ. In other words,

an increase in τe or τf shifts the job-destruction condition down in θ-R space. Conversely, an

increase in τ b raises the worker’s outside option and hence increases R for given θ.

By free entry, rV = 0, and hence

(1− β)

Z
max [So (x) , 0] dG (x) =

ck

q (θ)
. (28)

26The wages and profit in ongoing matches are given by w (x) = β (x− φ− c+ τe + rτf ) k + (1− β) rU
and π (x) = (1− β) [(x− φ− c) k − rU ] − β (τe + rτf ) k, while those agreed upon in an initial match are
wo (x) = w (x) + β (r + δ + λ) (τh − τ f ) k and πo (x) = π (x) − β (r + δ + λ) (τh − τf ) k. All matches still set
hours according to (8).
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Note that So (x) = S (x) + (τh − τf ) k, so in the presence of firing and hiring policies, the

reservation strategy used for match formation, say Ro, may differ from R, the one used for

match dissolution. However, there are several specifications for the hiring subsidy and the

destruction tax under which Ro = R, and the analysis will focus on this subset of policies

hereafter.27 Then (28) becomes

(1− β)

Z
R
S (x)dG (x) =

ck

q (θ)
,

which together with (14) yields the job-creation condition:

1− β

r + δ + λ

Z
R
(x−R)dG (x) + (1− β) [1−G (R)] (τh − τf ) =

c

q (θ)
.

Finally, assuming G is as in (20), the job-destruction and creation conditions specialize to

R− φ− c+ τe + rτf −
³
τ b +

β
1−β cθ

´
+ λεαR1−α

(α−1)(r+δ+λ) = 0 (29)

εαR1−α
(α−1)(r+δ+λ) +

¡
ε
R

¢α
(τh − τf )− c

q(θ)(1−β) = 0. (30)

The main properties of the equilibrium are summarized as follows.

Proposition 1 Suppose ε + (α− 1) (r + δ + λ) (τh − τf ) > 0. Let θ∗ be defined by q (θ∗) =
(α−1)(r+δ+λ)c

(1−β)[ε+(α−1)(r+δ+λ)(τh−τf)] and φ =
h
1 + λ

(α−1)(r+δ+λ)
i
ε−

³
1 + β

1−β θ
∗
´
c+ τh + rτ f − τ b. If

ε+ α (r + δ + λ) (τh − τf ) > 0, then for any φ > φε (a) there exists a unique equilibrium, (b)

R > ε, (c) ∂R/∂φ > 0 and (d) ∂θ/∂φ < 0. If in addition φ − ε > 0, then (e) there is a

nondegenerate interval (φ , eφ) such that R (φ) < φ for all φ ∈ (φ , eφ).
Aggregate output is still given by (22); the aggregate stock of capital in filled jobs, Ke, is still

given by (17); and the aggregate number of hours worked, N , is still given by N = (R/µ)αKe.
27The simplest example of one such policy is the self-financing policy that sets τh = τf for all values of the

idiosyncratic productivity draw x. But more generally, a policy specifying τh = τ f for all realizations x ≤ R
and τh > τf for all x > R would also imply Ro = R. Note that a policy that merely specifies τh > τ f for all
x will be abused by firms and workers in the sense that since Ro < R, a firm-worker pair that meets and draws
x ∈ (Ro, R] will want to form a match only for an instant to collect (τh − τf ) k and destroy it right away (since
right after collecting from the government their break-up decision is given by R). Yet another set of policies
delivering Ro = R is having τf > τh = 0 but assuming τ f is enforced from the very instant the firm-worker pair
meet and start bargaining, which implies wo (x) = w (x) since in this case the firm is “locked in” by the firing
tax upon meeting the worker.
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In addition, if the measure of capital used to construct aggregate output is Ke, then the level

of TFP is again given by (23). The following result, which holds under the assumptions stated

in Proposition 1, summarizes the effects that labor market policies have on the level of TFP.

Proposition 2 Employment subsidies and firing taxes reduce A. Hiring subsidies and unem-

ployment benefits increase A.

Since A is proportional to R, policies have the same qualitative effect on TFP as on the de-

struction rate. Proposition 2 is illustrated in Figure 3.

Figure 3: Equilibrium effects of various policies.

Employment subsidies make firms more tolerant of low productivity realizations and hence

lower the average productivity of active firms. All else equal, an economy with relatively high

subsidies to continued employment will exhibit a low job-destruction rate, a high job-creation
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rate, and hence low levels of unemployment and measured TFP. Firing taxes have a similar

qualitative effect on job-destruction, but that mechanism is reinforced by a relatively low rate

of job-creation (which reduces the reservation wage and hence makes firms even more tolerant

of low productivity realizations). So firing restrictions will reduce measured TFP, as well as

the job-creation and destruction rates. Hiring subsidies have no direct effect on the destruc-

tion decision, but they stimulate job-creation. This increases market tightness which in turn

increases the workers’ outside option and raises measured TFP, job-creation and destruction.

Unemployment benefits also cause R to rise through an increase in the worker’s reservation

wage. Consequently, economies with relatively high unemployment benefits will tend to exhibit

relatively high levels of TFP and unemployment.

6 Extensions

This section extends the basic model to the case of serially correlated shocks, generalizes the

main aggregation result, and shows how the observed level of TFP is affected by the various

ways of measuring aggregate inputs that can be found in the literature.

6.1 Correlated Shocks

Section 4 established that, with some mismeasurement and equilibrium hoarding, the standard

search model of the labor market with a particular structure of shocks generates a relationship

between aggregate inputs and output that looks exactly like the standard Cobb-Douglas relation

typically used in growth accounting exercises. The fixed cost C (x, φ) was introduced in Section

2 as a simple device to avoid “flat spots” in the value functions, and this made it possible for

the equilibrium to exhibit hoarding.28 Here I show that by extending the model in a natural

28For C (x, φ) = 0, π (x) = [max (x− φ, 0)− c] k − w (x), so π (x) is flat up to φ and then rises with slope k.
It is easy to show that in this case J (x) is also flat up to φ and then rises with slope k

r+δ+λ . Note that since
R is defined by J (R) = 0, this implies that generically the equilibrium with endogenous destruction will have
φ < R; i.e., there is no hoarding except for the knife-edge case in which R is indeterminate. Ruling out these
types of flat spots in J allows for the possibility that R < φ in an equilibrium with endogenous destruction. See
Appendix B for details.
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way, one can drop the fixed cost without affecting the main results. To this end, I generalize the

productivity process by allowing for serially correlated shocks: when a match of productivity

x suffers a change, the new value x0 is a draw from the fixed distribution G (x0|x). Assuming
G (x|x1) < G (x|x0) if x0 < x1 allows idiosyncratic shocks to be positively correlated through

time. For this case, the cross-section of productivities evolves according to

d

dt
[(1− ut)Ht (x)] = λ (1− ut)

Z ∞

x
[G (x|s)−G (Rt|s)] dHt (s)

+θq (θ)ut

Z ∞

−∞
[G (x|s)−G (Rt|s)] dHt (s)

−λ (1− ut)

Z x

−∞
G (Rt|s) dHt (s)

−λ (1− ut)

Z x

−∞
[1−G (x|s)] dHt (s)− δ (1− ut)Ht (x) .

The first term accounts for the matches with productivities above x that get innovations below x

but above Rt. The newly formed matches that start off with productivities no larger than x are

in the second term. Notice the assumption that upon contact, the worker and firm draw their

productivity level from the density corresponding to the average productivity among active

matches.29 The third term is the number of matches in the interval [Rt, x] that get shocks

below Rt and are destroyed. The fourth term accounts for the number of matches in the same

interval that “move up” by virtue of having drawn productivities larger than x. The last term

accounts for matches in the interval [Rt, x] that are destroyed for exogenous reasons. Imposing

steady states and re-arranging,

H (x) =

∙
λ

δ + λ
+

θq (θ)u

(δ + λ) (1− u)

¸ Z
[G (x|s)−G (R|s)] dH (s) .

29When shocks are iid, one can specify that new matches draw z from G (z) just as active matches do when
forced to update their shock. However, with correlated shocks active matches with state z draw the new shock
z0 from G (z0|z). Since vacancies and unemployed workers have no productivity attached to them, I assume
their initial draw z0 is from the average density

R
G (z0|z) dH (z). As a way of motivating this, imagine — as do

Mortensen and Pissarides (1994) — that firms must irreversibly adopt a “technology” to engage in production.
The present specification then means that they draw their technology at random from all those active at the
time the match is created. Jeffrey Campbell pointed out to me that Conlisk (1989) uses a similar assumption to
determine the productivity of newly created plants in a model of technical change.
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The steady-state unemployment rate is given by

u =
δ + λ

R
G (R|s)dH (s)

δ + λ
R
G (R|s)dH (s) + θq (θ)

R
[1−G (R|s)] dH (s)

. (31)

Using this expression, the steady-state cross-sectional productivity distribution becomes

H (x) =

R
[G (x|s)−G (R|s)] dH (s)R
[1−G (R|s)] dH (s) , (32)

a natural generalization of (3).

The problem of a searching firm is now summarized by

rV = −ck + q (θ)

Z Z
max [J (z)− V, 0] dG (z|x)dH (x) . (33)

And again, there will be entry of firms until all rents are exhausted, so rV = 0 in equilibrium.

The value of a filled job with productivity x is

rJ (x) = π (x) + λ

Z
max [J (z)− V, 0] dG (z|x)− (δ + λ) [J (x)− V ] , (34)

where π (x) = xmin (n, k)− φn− ck − w (x). Flow profit π (x) is the residual remaining after

the wage w (x) and all other costs of production have been paid out. There are only two such

costs in this formulation: the rental rate, ck, and the variable cost, φn.30 The choice of hours

that solves the bargaining problem is still given by (8), and hence π (x) = y (x)−w (x), where

y (x) ≡ [max (x− φ, 0)− c] k is output net of the variable cost and the rental on capital.

The values of unemployment and employment to a worker are

rU = b+ θq (θ)

Z Z
max [W (z)− U, 0] dG (z|x) dH (x) (35)

rW (x) = w (x) + λ

Z
max [W (z)− U, 0] dG (z|x)− (δ + λ) [W (x)−U ] , (36)

where w (x) it is still characterized by (9). Letting S (x) = J (x) + W (x) − U denote the

surplus from a match, notice that (9) implies J (x) = (1− β)S (x), W (x) − U = βS (x),

π (x) = (1− β) [y (x)− rU ] and

w (x) = βy (x) + (1− β) rU. (37)
30Here I model φn as a cost borne by the firm, but Appendix B shows that this formulation is equivalent to

one where φn is instead the disutility the worker experiences from working n hours.
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Combining (9) with (34), (35) and (36) yields

(r + δ + λ)S (x) = y (x)− rU + λ

Z
max [S (z) , 0] dG (z|x) ,

where rU is given by (10). The fact that S0 (x) > 0 implies that there exists a unique R such

that S (x) > 0 iff x > R. Hence matches separate (or don’t form) for productivity draws

below R. Moreover, notice that S (x) is strictly increasing for all x (even for x < φ) despite

the fact that y (x) is flat for x < φ. This is because dG (·|x) is stochastically increasing in x.

Consequently, the equilibrium may have R > φ (no hoarding) for some parametrizations and

R < φ (hoarding) for others. The logic of Figure 2 still applies in trying to determine which

parametrizations may exhibit hoarding. Next, I turn to the issue of aggregation.

Suppose idiosyncratic shocks are draws from

G (x|s) =
(
0 if x < ε (s)

1−
h
ε(s)
x

iα
if ε (s) ≤ x,

where ε (·) is a continuously differentiable function and α > 2. I introduce positively correlated

shocks by assuming that ε0 > 0 (if ε0 = 0 the distribution reduces to (20), the special case of

uncorrelated shocks). In addition, suppose there is an ε > 0 such that ε (ε) = ε and ε (s) = 0

if s < ε, and that lim
s→∞ε (s) = 1 + ε ≡ ε.31

Then for R ≥ ε (s), 1 − G (R|s) =
h
ε(s)
R

iα
; hence, for any x ≥ R, G (x|s) − G (R|s) =

[ε (s) /R]α [1− (R/x)α]. After substituting these expressions in (32) it becomes clear that the
steady state productivity distribution of active matches is still given by (21). So for this case,

the job-creation and destruction conditions are

µ1−αRα

α−1 − α[y(R)−rU ]
k

h
R

ε(R)

iα Z
R

ε(x)α−ε(R)α
x1+α dx− (r+δ+λ)c

(1−β)q(θ)

∙
α

Z
R

ε(x)α

x1+α dx

¸−1
= 0∙

1− λα
r+δ+λ

Z
R

ε(x)α−ε(R)α
x1+α

dx

¸
y(R)−rU

k + λ
r+δ+λ

ε(R)αµ1−α
α−1 = 0.

An equilibrium is still a list [R, θ,H,U,w, u,K] such that R, θ and H jointly solve (32) and the

job-creation and the job-destruction conditions, rU is given by (10), w is given by (37), and u

31An example of a function ε (·) satisfying all these conditions is ε (s) = 1 + ε− eε−s, for any ε > 0.
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satisfies (31). In addition, the market for capital should clear, so [1− (1− θ)u] k = K. Sufficient

conditions can be found so that the job-creation condition slopes down and the destruction

condition up in θ-R space, implying a unique (θ,R) pair. A parameter restriction analogous

to the one depicted in Figure 2 guaranteeing that there is a range of values for φ such that

R < φ can still be derived.32 Given the equilibrium pair (θ,R), the same procedure followed

in Section 4 reveals that output aggregates to (22). Thus the key aggregation result obtained

in the context of the model of Section 2 does not hinge on some of the particular modelling

choices made there. In particular, allowing for correlated shocks can generate hoarding, and

there is no need for the fixed cost of Section 2.

6.2 More on Aggregation

In this subsection I prove two additional aggregation results. First, I provide another specifica-

tion of primitives that delivers the same aggregation result obtained for the models of Sections

2 and 6.1. Again, this specification does not rely on the fixed cost of Section 2, so in a way

it reinforces the message of Section 6.1. The second aggregation result shows how to “reverse

engineer” a distribution of idiosyncratic shocks that gives rise to an aggregate CES production

function.

First consider the model of Section 2, but with C = 0 and separation rates that are de-

creasing in the productivity of the match; i.e., 0 < δ (x) < ∞ for all x, with δ0 < 0. The

interpretation is that δ is a technological parameter: in any small time-interval, with proba-

bility δ (x) the idiosyncratic productivity of the match jumps to zero and stays at that level

forever. I return to the case of uncorrelated productivity draws for the remainder of the section.

32Showing that equilibria with R < φ are possible for some parametrizations is now rather tedious, so the
basic idea is only outlined here. Let φε be the value of φ such that θ

∗
ε and R (φε) = ε solve the job-creation and

destruction conditions. Then if φε − ε > 0, there will be an interval (φε, bφ) such that R (φ) < φ iff φ ∈ (φε, bφ).
If, in addition, ∂R (φ) /∂φ > 0, then φε − ε > 0 also implies ε < R (φ) for all φ. Finally, notice that R > ε also
implies that every match faces a positive probability of being destroyed for endogenous reasons. To see why,
suppose R = < ε; then any match that reaches a state s > ε−1 ( ) will never be destroyed endogenously.
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The distribution of active matches now evolves according to

d

dt
[(1− ut)Ht (x)] = λ (1− ut) [1−Ht (x)] [G (x)−G (Rt)] + θq (θ)ut [G (x)−G (Rt)]

−λ (1− ut)Ht (x)G (Rt)− λ (1− ut)Ht (x) [1−G (x)] (38)

− (1− ut)

Z
R
δ (s) dHt (s) .

The value functions (5) and (7) are respectively replaced by

rW (x) = w (x) + λ

Z
max [W (z)− U, 0] dG (z)− [δ (x) + λ] [W (x)− U ]

rJ (x) = π (x) + λ

Z
max [J (z)− V, 0] dG (z)− [δ (x) + λ] [J (x)− V ] ,

while (4) and (6) remain unchanged. The bargaining outcome is still characterized by (8) and

(9), and the value functions imply

S (x) =
[max (x− φ, 0)− c] k − rU + λ

R
max [S (z) , 0] dG (z)

r + δ (x) + λ
,

which is clearly increasing in x and has a kink at φ, as is usual when departing from the simple

fixed-cost formulation of Section 2. Plotting S (x) reveals that, depending on parametrizations,

two cases are possible: the kink could be above or below the horizontal axis. If it is above, then

R < φ and there is equilibrium hoarding. The job-creation and destruction conditions can be

derived as usual, and an equilibrium can be summarized by the (θ,R) pair that solves them.

The following result provides conditions under which this model aggregates to (22), just as in

the models of Section 2 and 6.1.

Proposition 3 Suppose δ (x) = δx−σ and the primitive density of shocks is

dG (x) =
αλ (α+ σ) εα

λ (α+ σ) + αδε−σ

µ
1 +

δ

λ
x−σ

¶
x−α−1

for x ≥ ε and dG (x) = 0 otherwise, where ε, δ, σ > 0, and α > 1. Then in equilibrium, the

aggregates Y , Ke and N satisfy (22).
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So far I have shown that in several versions of the Mortensen-Pissarides model, for certain

distributions of the idiosyncratic shocks, aggregate output looks like a Cobb-Douglas function

of the aggregate labor and capital inputs. What follows generalizes the previous results by

characterizing the distribution of shocks that gives rise to an aggregate CES production function.

Suppose the primitive distribution of shocks, G, is given by

G (x) =

(
0 if x < ε

1−
h
1
σ

¡
x
ε

¢ ρ
1−ρ − 1−σ

σ

i−1/ρ
if ε ≤ x,

(39)

with ε > 0 and ρ, σ ∈ (0, 1).33 Substituting (39) into (3), one sees that for any R ≥ ε, the

steady state productivity distribution of active matches is

H (x) = 1− κ

∙
1

σ

³x
ε

´ ρ
1−ρ − 1− σ

σ

¸−1/ρ
(40)

if R ≤ x; and H (x) = 0 if x < R, with κ ≡ [1−G (R)]−1. Using a related insight due to

Levhari (1968), one can establish the following result.

Proposition 4 If the primitive distribution of the idiosyncratic shocks is given by (39), then in

equilibrium, the aggregates Y , Ke and N satisfy Y = B
£
σĀKρ

e + (1− σ)Nρ
¤1/ρ, with B = ε

1−σ ,

and Ā =
h
1
σ

¡
R
ε

¢ ρ
1−ρ − 1−σ

σ

i
.

In this case, all the characteristics of the labor market as summarized by R affect the

measured productivity of inputs asymmetrically.34 Notice that as ρ → 0, (39) approaches the

Pareto distribution in (20) with parameters ε and α = 1/σ. So in this sense, the CES aggregate

in Proposition 4 approaches the Cobb-Douglas aggregate in (22) as the elasticity of substitution

1/ (1− ρ) approaches unity.35

33Under these conditions G0 (x) ≥ 0 and lim
x→∞

G (x) = 1, so G is a proper cdf .
34 If the aggregation were performed using (39) instead of its truncation, then the aggregate would instead be

Y = R
1−σ [σK

ρ
e + (1− σ)Nρ]1/ρ. However, there is no primitive density that has (39) as its truncation.

35Notice, however, that the truncation of (39) does not approach (21) as ρ → 0. That is, even though the
primitive distribution approaches a Pareto, its truncation does not limit a truncated Pareto. This is because the
density in (39) is not “closed” under truncations (as, for example, the Pareto and the exponential distributions
are). This “discontinuity” introduced by the truncation is the reason why if we take the limit on the truncated
cdf or on the CES aggregate directly, we don’t obtain exactly (22).
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6.3 Measurement

I conclude this section by showing how the observed level of TFP is affected by the different

ways of measuring aggregate inputs that can be found in the literature. The measure of capital

input used by Hall and Jones (1999) did not adjust for utilization. This means that K instead

of Ke was used in the production function, which would imply F̂ (K,N) = ÂKγN1−γ, with

Â =
h

1−u
1−(1−θ)u

iγ
A, as mentioned in Section 4. But in addition, Hall and Jones (1999) report

they did not have data on hours per worker for all countries in their sample, so they used the

number of employed workers instead of hours worked as a measure of labor input. Letting E =

1−u denote employment and using (17), the number of hours worked is N = (R/µ)1/γ KE
1−(1−θ)u ,

so their measurements of inputs imply that the aggregate relationship between inputs, output

and TFP that they observed was F̃ (K,E) = ÃKγE1−γ, with Ã =
h
(R/µ)1/γK
1−(1−θ)u

i1−γ
Â.

Finally, although the emphasis throughout the paper has been on understanding the deter-

minants of the Solow residual, it may also be interesting to point out that the foundation for the

aggregate production function provided here also has implications for other aspects of standard

growth accounting exercises. In particular, according to this theory, the exponent of the capital

stock in the aggregate production function, γ, is a parameter of the underlying distribution of

shocks and not the share of income accruing to capital as in the standard neoclassical growth

model.36

36To see that γ need not equal the capital share, let sw and sk denote the labor and capital shares, respectively,
and consider a version of the basic model in which φ indexes a worker’s disutility from work, b = τ bk, and there
is no fixed cost (i.e., C = 0). Then,

sw = β + ξ (1− β)− zk
Ke

Y
+ zn

N

Y
and sk = 1− sw,

where zk ≡ [1− (1− ξ) (1− β)] c − (1− ξ) [βcθ + (1− β) τb], zn ≡ (1− ξ) (1− β)φ and ξ is an accounting
parameter that denotes the fraction of the firm’s rents imputed as labor income. For example, if ξ = 1, then
sk =

cKe
Y = c

F1(Ke,N)
γ.
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7 Concluding Remarks

This paper developed a theory of TFP differences based on the interaction between institu-

tions and the microeconomics underlying the aggregate production function. By thinking of

the aggregate production function as an equilibrium relationship between aggregate inputs and

output arising from the aggregation of heterogeneous micro-level production units, I was able

to show analytically how the measured level of TFP — usually a “black box” that drives cross-

country income differences — depends on primitive technological parameters, policies and other

features of the economic environment. It seems this approach can be useful to interpret aggre-

gate productivity data and can serve as a guide to uncover sources of cross-country differences

in measured TFP.

The analysis focused on a precise class of institutions, namely, labor-market policies as

measured by the magnitudes of hiring and employment subsidies, unemployment benefits and

firing taxes. In the model, firm-level technologies are subject to idiosyncratic shocks that induce

a cross-sectional distribution of productivities. Labor-market policies affect the productivity

composition of active firms through their effects on the job-creation and destruction decisions.

Policies that make firing difficult make firms less willing to give up relatively unproductive

opportunities, lowering the average productivity among active matches and aggregate TFP.

Employment subsidies also make firms more tolerant of low productivity realizations, and hence

they also decrease TFP. Unemployment benefits have the opposite effect. Hiring subsidies

stimulate job creation and cause more competition among firms. As a result, firms become

more selective and only pursue very productive ventures. The cross-sectional distribution of

productivities shifts to the right, leading to a higher level of measured TFP.
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A Appendix

Proof of Proposition 1.

In R-θ space, the slopes of the job-destruction and creation conditions (29) and (30) are

1− β

βc

∙
1− λ (ε/R)α

r + δ + λ

¸
and

(1− β) θq (θ) (ε/R)α τ (R)

−cη (θ) (r + δ + λ)R
,

respectively, where τ (R) = R+α (r + δ + λ) (τh − τf ). Note that for all R ≥ ε, the destruction

condition slopes up and the creation condition slopes down. If φ = φ , then (29) and (30) have

a unique solution, namely, θ (φ ) = θ∗ and R (φ ) = ε. Increases in φ only shift the destruction

condition down, increasing the equilibrium level of R and decreasing the equilibrium level of θ

(the creation condition is independent of φ). In addition, for any given φ, the creation condition

(30) asymptotes the horizontal axis in (R, θ) space and the job-destruction condition (29) grows

without bound. Therefore (a)-(d) follow for any φ > φ . Finally, φ − ε > 0 is equivalent to

φ −R (φ ) > 0, which implies (e).

Proof of Proposition 2.

Define ∆ = (ε/R)ατ(R)
(r+δ+λ)R + η(θ)

βθq(θ)

h
1− λ(ε/R)α

r+δ+λ

i
. Since τ (R) > 0 by Proposition 1, it follows

that ∆ > 0 in any equilibrium. By totally differentiating (29) and (30),

∂R

∂τ e
=

−η (θ)
βθq (θ)∆

< 0,
∂R

∂τf
= − (1/∆)

∙
(ε/R)α +

rη (θ)

βθq (θ)

¸
< 0,

∂R

∂τh
= (1/∆) (ε/R)α > 0,

∂R

∂τ b
= − ∂R

∂τe
> 0,

and this concludes the proof.

Proof of Proposition 3. First, note that the corresponding distribution function is

G (x) = αλ(α+σ)εα

λ(α+σ)+αδε−σ

n
ε−α
α

£
1− ¡ εx¢α¤+ δε−(α+σ)

λ(α+σ)

h
1− ¡ εx¢α+σio . (41)

Verify thatG (ε) = 0 and limx→∞G (x) = 1. Under the parametric restrictions in the statement,

dG (x) ≥ 0 for all x, so dG is a proper density. The restriction α > 1 ensures the mean is finite.
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Imposing steady states in (38), substituting (41) and solving for H (x) reveals that H (x) is as

in (21).

Proof of Proposition 4.

The problem is to find a cdf H that satisfies H (R) = 0 and yields

Y = a [σ1 (κ̂Ke)
ρ + σ2N

ρ]1/ρ , (42)

where ρ ∈ (0, 1) and a, κ̂, σ1 and σ2 are positive constants. Define ς (x) =
R
x zh (z) dz and

s (x) = 1 − H (x). Since, in general, Y = ς (µ)Ke and N = s (µ)Ke, (42) can be rewritten

as ς (x)ρ = aρ [σ1κ̂
ρ + σ2s (x)

ρ]. Differentiating both sides of this expression gives ς (x) =³
x

σ2aρ

´ 1
1−ρ

s (x). The last two equations yield s (x) = κ̂

∙
1
σ1

³
x
σ2a

´ ρ
1−ρ − σ2

σ1

¸−1/ρ
, which by

defining

ε = σ2a (σ1 + σ2)
1−ρ
ρ and σ =

σ1
σ1 + σ2

(43)

can be rewritten as H (x) = 1 − κ̂
h
1
σ

¡
x
ε

¢ ρ
1−ρ − 1−σ

σ

i−1/ρ
. The requirement that H (R) = 0

implies that κ̂ = κ (with κ as defined in Subsection 6.2). After specifying that H (x) = 0 for

x < R, this expression is identical to (40). So by construction, aggregation under (40) yields

(42). And after letting κ̂ = κ and making the substitutions in (43), one realizes that (42) is

identical to the aggregate in Proposition 4. Finally, verifying that (40) is the truncation of (39)

at R concludes the proof.

To complete the analysis of Section 5, here I report the effects of all policies on market

tightness:

∂θ

∂τe
=
− (1− β) θq (θ) (ε/R)α τ (R)

cη (θ) (r + δ + λ)R

∂R

∂τe
> 0,

∂θ

∂τh
=
1− β

βc

∙
1− λ (ε/R)α

r + δ + λ

¸
∂R

∂τh
> 0,

∂θ

∂τ b
=
− (1− β) θq (θ) (ε/R)α τ (R)

cη (θ) (r + δ + λ)R

∂R

∂τ b
< 0,

∂θ

∂τf
=
1− β

βc

½
r +

∙
1− λ (ε/R)α

r + δ + λ

¸
∂R

∂τf

¾
.

Without additional restrictions the sign of ∂θ/∂τf is ambiguous. It is negative in any

equilibrium with φ > φ if δ > r (1− ε) /ε.
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B Appendix

Lemma 1 Let ϕ (R) =
R
R [1−G (x)] dx, θ = 1−β

βc

h
λ

r+δ+λϕ (0)− φ− c
i
. If τ b is small and

q (θ) > r+δ+λ
(1−β)ϕ(0)c, then there exists a unique pair (θ,R) ∈ R2+ that solves (15) and (16).

Proof. Differentiating (15) and (16) respectively,

∂R

∂θ

¯̄̄̄
JD

=
n
(1−β)[1−(1−β)τb]

βc

h
1− λ[1−G(R)]

r+δ+λ − τbβG
0(R)ϕ(R)

[1−(1−β)τb][1−G(R)]2
io−1

∂R

∂θ

¯̄̄̄
JC

=
− (r + δ + λ) cη (θ)

(1− β) θq (θ) [1−G (R)]
,

where η (θ) ≡ −θq0 (θ) /q (θ) > 0. Notice that the job-creation condition is downward sloping in
(θ,R) space, while the job-destruction condition is upward sloping provided τ b is not too big.

To verify this note that if τ b ≈ 0, the slope of the job-destruction condition reduces to

∂R

∂θ

¯̄̄̄
JD

=
βc

(1− β)
n
1− λ[1−G(R)]

r+δ+λ

o > 0.

Therefore as long as τ b is small enough, if an intersection exists, it must be unique. To establish

existence, define

T (R, θ) ≡ R− τbβx̃(R)
1−(1−β)τb −

(1−τb)(φ+c)
1−(1−β)τb −

βcθ
(1−β)[1−(1−β)τb] +

λ
r+δ+λϕ (R)

T̂ (R, θ) ≡ ϕ (R)− (r + δ + λ) c

(1− β) q (θ)
.

The equilibrium conditions (15) and (16) are equivalent to T (R, θ) = 0 and T̂ (R, θ) = 0,

respectively. Let θ and θ be defined by T (0, θ) = 0 and T̂
¡
0, θ
¢
= 0, respectively. Since the θ

that satisfies (16) goes to 0 as R gets large, and the θ that satisfies (15) grows without bound

as R gets large, existence is guaranteed for parametrizations that satisfy θ < θ. Note that θ

solves q
¡
θ
¢
= r+δ+λ

(1−β)ϕ(0)c, and if τ b ≈ 0 then θ is as in the statement of the Lemma. Thus the

condition θ < θ is equivalent to the parametric restriction q (θ) > r+δ+λ
(1−β)ϕ(0)c.
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Lemma 2 Let

θ = (1−β)[1−(1−β)τb]
βc

nh³
1 + λ

(α−1)(r+δ+λ) − τbαβ
(α−1)[1−(1−β)τb]

´
ε− (1−τb)(φ+c)

1−(1−β)τb
io

.

Suppose q (θ) > (α−1)(r+δ+λ)c
(1−β)ε , and τ b ≤ τ̄ b, where

τ̄ b =
(α− 1) (r + δ)

βα (r + δ + λ) + (1− β) (α− 1) (r + δ)
.

Then there exists a unique pair (θ,R) ∈ (0,∞)× (ε,∞) that satisfies (24) and (25).

Proof. Differentiating (24) and (25),

∂R

∂θ

¯̄̄̄
JD

=
n
(1−β)[1−(1−β)τb]

βc

h
1− λ(ε/R)α

r+δ+λ − τbαβ
(α−1)[1−(1−β)τb]

io−1
∂R

∂θ

¯̄̄̄
JC

=
− (r + δ + λ) cη (θ)

(1− β) (ε/R)α θq (θ)
,

where η (θ) ≡ −θq0 (θ) /q (θ) > 0. Thus the job-creation condition (25) is always downward

sloping in (θ,R) space, while the job-destruction condition (24) is upward sloping if τ b ≤ τ̄ b.

So under this condition, if an intersection exists, it is unique. The parameter restriction q (θ) >

(α−1)(r+δ+λ)c
(1−β)ε guarantees that the two lines intersect on (0,∞)× (ε,∞).

The model of Section 2 with a general fixed cost.

The value functions are still given by (4), (5), (6) and (7), but the profit function is now

π (x) = xmin (n, k)−w (x)− ck − φn−C (x)k,

where C (x) is continuous and C0 < 0 (the inequality need only be strict for x < φ). The bargain-

ing problem is unchanged, and hours are still given by (8), so π (x) = [max (x− φ, 0)− c−C (x)] k−
w (x). Also from the Nash bargaining, wages are

w (x) = β [max (x− φ, 0)− c−C (x)] k + (1− β) rU, (44)

and therefore flow profits are

π (x) = (1− β) {[max (x− φ, 0)− c−C (x)] k − rU} . (45)
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Steps similar to the ones that led to (14) now imply

S (x) =
max (x− φ, 0)−max (R− φ, 0) +C (R)−C (x)

r + δ + λ
k. (46)

Note that if the idiosyncratic technology shock does not induce savings in the fixed cost

(i.e., if either C (x) = 0 for all x or C 0 = 0), then (46) reduces to (r + δ + λ)S (x) =

[max (x− φ, 0)−max (R− φ, 0)] k. From this it is clear that the expected surplus S (x) is

flat for x < φ, meaning that generically, R > φ, in an equilibrium with endogenous destruc-

tion. (The reservation R is indeterminate in the interval [0, φ] in the knife-edge case where the

flat spot coincides with the horizontal axis.) Conversely, C0 < 0 ensures that S (x) is strictly

increasing for all x, and therefore the level R for which S (R) = 0 may be to the right or to the

left of φ, depending on the parametrization. In general, S (x) will have a kink at x = φ, but

this is immaterial for my purposes. The job-destruction condition for this case is

p (R)− c− rU

k
+

λ

r + δ + λ
ϕ̂ (R) = 0, (47)

where p (R) ≡ max (R− φ, 0)−C (R), rU is still given by (10), and

ϕ̂ (R) ≡
Z
R
[max (x− φ, 0)−max (R− φ, 0) +C (R)−C (x)] dG (x) .

The job-creation condition is

ϕ̂ (R)− (r + δ + λ) c

(1− β) q (θ)
= 0. (48)

Specifying the unemployment income by b = τ bk as in Section 5, it is immediate that (47)

is increasing and (48) decreasing in (θ,R) space, so they will intercept exactly once under

conditions analogous to those in Lemma 1. Alternatively, letting b = τ bEG [w (x) |x ≥ R], (47)

specializes to

p (R)− (1−τb)c
1−(1−β)τb −

βcθ
(1−β)[1−(1−β)τb] −

τbβÊ(R)
1−(1−β)τb +

λ
r+δ+λ ϕ̂ (R) = 0, (49)

where Ê (R) ≡ [1−G (R)]−1
R
R [max (x− φ, 0)−C (x)] dG (x). For this formulation, condi-

tions analogous to the ones in Lemma 2 (essentially a replacement rate τ b that is not “too big”)
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will guarantee existence and uniqueness of a pair (θ,R) that satisfies (48) and (49). Given the

equilibrium (θ,R), the aggregation proceeds exactly as in Section 4.

Reinterpreting the variable cost φn as disutility from work.

Instead of assuming there is a variable cost of production φn as in Section 2, now suppose

there is no such cost, but instead the worker suffers disutility φn if she supplies n hours to the

firm. The value functions (4), (6) and (7) remain unchanged, while (5) is now

rW (x) = w (x)− φn+ λ

Z
max [W (z)− U, 0] dG (z)− (δ + λ) [W (x)− U ] . (50)

The firm’s flow profit is modified accordingly to π (x) = xmin (n, k)− w (x)− ck − C (x) k.37

The bargaining solution implies a choice of hours that is still characterized by (8). Naturally,

regardless of which party bears the cost φn, the efficient bargaining solution will ensure the

efficient number of hours worked and will use the wage w (x) to distribute the surplus among

the partners. In fact, since W (x) is now given by (50), the first-order condition (9) now yields

w (x) = φn+ β [max (x− φ, 0)− c−C (x)] k + (1− β) rU (51)

π (x) = (1− β) {[max (x− φ, 0)− c−C (x)] k − rU} , (52)

where rU still satisfies (10). The outcome is that regardless of who suffers the production cost

φn, the worker and firm share it so that the firm bears a fraction 1 − β. In fact, comparing

(52) with (45) confirms that the firm’s flow profit is unchanged when φn is modeled in this way.

Similarly, note that the worker’s value function is also unchanged in this formulation relative

to the variable cost interpretation. This can be verified by checking that substituting (51) into

(50) delivers the same expression for the worker’s value function as substituting (44) into (5).

37The fixed cost C (x) k could be set to zero here. This is of no consequence for the purposes of reinterpreting
φn as a disutility cost from work.
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