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1. Introduction

A major part of the research effort in finance is directed toward understanding why we
observe a variety of financial assets with different expected rates of return. For example, the U.S.
stock market as a whole earned an average annual return of 11.94% during the period from January
of 1926 to the end of 1991. U.S. Treasury bills, in contrast, earned only 3.64%. The inflation rate
during the same period was 3.11% (see Ibbotson Associates 1992).

To appreciate the magnitude of these differences, note that in 1926 a nice dinner for two in
New York would have cost about $10. If the same $10 had been invested in Treasury bills, by the
end of 1991 it would have grown to $110, still enough for a nice dinner for two. Yet ten dollars
invested in stocks would have grown to $6,756. The point is that the average return differentials
among financial assets are both substantial and economically important.

A variety of asset pricing models have been proposed to explain this phenomenon. Asset
pricing models describe how the price of a claim to a future payoff is determined in securities
markets. Alternatively, we may view asset pricing models as describing the expected rates of return
on financial assets, such as stocks, bonds, futures, options, and other securities. Differences among
the various asset pricing models arise from differences in their assumptions that restrict investors’
preferences, endowments, production, and information sets; the stochastic process governing the
arrival of news- in the financial markets; and the type of frictions allowed in the markets for real and
financial assets.

While there are differences among asset pricing models, there are also important commonali-
ties. All asset pricing models are based on one or more of three central concepts. The first is the law
of one price, according to which the prices of any two claims which promise the same future payoff
must be the same. The law of one price arises as an implication of the second concept, the

no-arbitrage principle. The no-arbitrage principle states that market forces tend to align the prices of



financial assets to eliminate arbitrage opportunities. Arbitrage opportunities arise when assets can be
combined, by buying and selling, to form portfolios that have zero net cost, no chance of producing
a loss, and a positive probability of gain. Arbitrage opportunities tend to be eliminated by trading in
financial markets, because prices adjust as investors attempt to exploit them. For example, if there
is an arbitrage opportunity because the price of security A is too low, then traders’ efforts to purchase
security A will tend to drive up its price. The law of one price follows from the no-arbitrage
principle, when it is possible to buy or sell two claims to the same future payoff. If the two claims
do not have the same price, and if transaction costs are smaller than the difference between their
prices, then an arbitrage opportunity is created. The arbitrage pricing model (APT, Ross 1976) is the
most well-known asset pricing model based on arbitrage principles.

The third central concept behind asset pricing models is financial market equilibrium.
Investors’ desired holdings of financial assets are derived from an optimization problem. A necessary
condition for financial market equilibrium in a market with no frictions is that the first-order
conditions of the investors’ optimization problem be satisfied. This requires that investors be
indifferent at the margin to small changes in their asset holdings. Equilibrium asset pricing models
follow from the first-order conditions for the investors’ portfolio choice problem and from a market-
clearing condition. The market-clearing condition states that the aggregate of investors’ desired asset
holdings must é:qual the aggregate “market portfolio” of securities in supply.

The earliest of the equilibrium asset pricing models is the Sharpe-Lintner-Black-Mossin
Capital Asset Pricing Model (CAPM), developed in the early 1960s. The CAPM states that expected
asset returns are given by a linear function of the assets’ betas, which are their regression coefficients
against the market portfolio. Merton (1973) extended the CAPM, which is a single-period model, to
an economic environment where investors make consumption, savings, and investment decisions

repetitively over time. Econometrically, Merton’s model generalizes the CAPM from a model with



a single beta to one with multiple betas. A multiple-beta model states that assets’ expected returns are
linear functions of a number of betas. The APT model of Ross (1976) is another example of a
multiple-beta asset pricing model, although in the APT the expected returns are only approximately
a linear function of the relevant betas.

In this paper we emphasize (but not exclusively) the econometric evaluation of asset pricing
models usin;g the Generalized Method of Moments (GMM, Hansen 1982). We focus on the GMM
because, in our opinion, it is the most important innovation in empirical methods in finance within
the past fifteen years. The approach is simple, flexible, valid under general statistical assumptions,
and often powerful in financial applications. One reason why the GMM is “general” is that many
empirical methods used in finance and other areas can be viewed as special cases of GMM.

The rest of this paper is organized as follows. In Section 2 we develop the CAPM and
multiple-beta models and discuss the classical two-stage regression procedure that was originally used
to evaluate these models. This material provides an introduction to the various statistical issues
involved in the empirical study of the models; it also motivates the need for multivariate estimation
methods. In Section 3 we describe an alternative representation of the asset pricing models which
facilitates the use of the GMM. We show that most asset pricing models can be represented in this
stochastic discount factor form. In Section 4 we describe the GMM procedure and illustrate how to
use it to estima’;e and test conditional and unconditional versions of asset pricing models. In Section
5 we discuss model diagnostics that provide additional insight into the causes for statistical rejections
and that help assess specification errors in the models. In order to avoid a proliferation of symbols,
we sometimes use the same symbols to mean different things in different subsections. The definitions

should be clear from the context. We conclude with a summary in Section 6.



2. Cross-Sectional Regression Methods for Testing Beta Pricing Models

In this section we first derive the CAPM and generalize its empirical specification to include
multiple-beta models. We then describe the intuitively appealing cross-sectional regression method
that was first employed by Black, Jénsen, and Scholes (1972, abbreviated here as BJS) and discuss

its shortcomings.

2.1 The Capital Asset Pricing Model

The CAPM was the first equilibrium asset pricing model, and it remains one of the founda-
tions of financial economics. The model was developed by Sharpe (1964), Lintner (1965), Mossin
(1966), and Black (1972). There are a huge number of theoretical papers which refine the necessary
assumptions and provide derivations of the CAPM. Here we provide a brief review of the theory.

Let R, denote one plus the return on asset i during period 7, i= 1, 2, ..., N. Let R,, denote the
corresponding gross return for the market portfolio of all assets in the economy. The return on the
market portfolio envisioned by the theory is not observable. In view of this, empirical studies of the
CAPM commonly assume that the market return is an exact linear function of the return on an

observable portfolio of common stocks.! Then, according to the CAPM,

(2.1) ER;) =98, + 8B,
where

Bi = Cov(R,.R,,) / Var(R,).

According to the CAPM, the market portfolio with return R, is on the minimum-variance frontier of

returns. A return is said to be on the minimum-variance frontier if there is no other portfolio with the

' When this assumption fails, it introduces market proxy error. This source of error is studied
by Roll (1977), Stambaugh (1982), Kandel (1984), Kandel and Stambaugh (1987), Shanken
(1987), Hansen and Jagannathan (1994), and Jagannathan and Wang (1995), among others. We
will ignore proxy error in our discussion.



same expected return but lower variance. If investors are risk averse, the CAPM implies that R, is
on the positively sloped portion of the minimum-variance frontier, which implies that the coefficient
8, > 0. In equation (2.1), 8, = E(R,,), where the return Ry, is referred to as a zero-beta asset to R,
because of the condition Cov(R,,.R,,) = 0.

To derive the CAPM, assume that investors choose asset holdings at each date ¢ so as to

maximize the following one-period objective function:

22) VIER,ID, Var(R,|D]

where R,, denotes the date-t return on the optimally chosen portfolio and E(. |D) and var(.|I) denote
the expectation and variance of return, conditional on the information set I of the investor as of time
t — 1. We assume that the function V[.,.] is increasing and concave in its first argument, decreasing
in its second argument, and time-invariant. For the moment we assume that the information set [
includes only the unconditional moments of asset returns, ;ind we drop the symbol I to simplify the
notation. The first-order conditions for the optimization problem given above can be manipulated to

show that the following must hold:
(2.3) ER,) = ERy) + BrER, — Ry)

for every asset i = 1, 2, ..., N, where R,, is the return on the optimally chosen portfolio, R,, is the

return on the asset that has zero covariance with R

o and By, = Cov(R,.R,) / Var(R,).

To get from the first-order condition for an investor’s optimization problem, as stated in
equation (2.3), to the CAPM, it is useful to understand some of the properties of the minimum-
variance frontier, that is, the set of portfolio returns with the minimum variance, given their expected
returns. It can be readily verified that the optimally chosen portfolio of the investor is on the

minimum-variance frontier.



One property of the minimum-variance frontier is that it is closed to portfolio formation. That
is, portfolios of frontier portfolios are also on the frontier. Suppose that all investors have the same
beliefs. Then every investor’s optimally chosen portfolio will be on the same frontier, and hence the
market portfolio of all assets in the economy-—which is a portfolio of every investor’s optimally
chosen portfolio—will also be on the frontier. It can be shown (Roll 1977) that equation (2.3) will
hold if R, is replaced by the return of any portfolio on the frontier and R,, is replaced by its
corresponding zero-beta return. Hence we can replace an investor’s optimal portfolio in equation (2.3)

with the return on the market portfolio to get the CAPM, as given by equation (2.1).

2.2 Testable Implications of the CAPM

Given an interesting collection of assets, and if their expected returns and market-portfolio
betas 3, are known, a natural way to examine the CAPM would be to estimate the empirical relation
between the expected returns and the betas and see if that relation is linear. However, neither betas
nor expected returns are observed by the econometrician. Both must be estimated. The finance
literature first attacked this problem by using a two-step, time-series, cross-sectional approach.

Consider the following sample analogue of the population relation given in (2.1):
24) R=08,+8b,+e,i=1,..,N

which is a cros-s-sectional regression of R; on b, with regression coefficients equal to §, and §,. In
equation (2.4), R; denotes the sample average return of the asset, i, and b, is the (OLS) slope
coefficient estimate from a regression of the return, R,, over time on the market index return, R,,; b;
is a constant. Let u; = R; — E(R,) and v; = B; — b,. Substituting these relations for E(R,) and JB; in (2.1)
leads to (2.4) and specifies the composite error as ¢; = u; + 8,v;. This gives rise to a classic errors-in-
variables problem, as the regressor b, in the cross-sectional regression model (2.4) is measured with

error. Using finite time-series samples for the estimate of b, the regression (2.4) will deliver



inconsistent estimates of 8, and §,, even with an infinite cross-sectional sample. However, the cross-
sectional regression will provide consistent estimates of the coefficients as the time-series sample size
T (which is used in the first step to estimate the beta coefficient B;) becomes very large. This is
because the first-step estimate of B, is consistent, so as T becomes large, the errors-in-variables
problem of the second-stage regression vanishes.

The measurement error in beta may be large for individual securities, but it is smaller for
portfolios. In view of this fact, early research focused on creating portfolios of securities in such a
way that the betas of the portfolios could be estimated precisely. Hence one solution to the errors-in-
variables problem is to work with portfolios instead of individual securities. This creates another
problem. Arbitrarily chosen portfolios tend to exhibit little dispersion in their betas. If all the
portfolios available to the econometrician have the same betas, then equation (2.1) has no empirical
content as a cross-sectional relation. Black, Jensen, and Scholes (BJS) came up with an innovative
solution to overcome this difficulty. At every point in time for which a cross-sectional regression is
run, they estimate betas on individual securities based on past history, sort the securities based on the
estimated values of beta, and assign individual securities to beta groups. This results in portfolios with
a substantial dispersion in their betas. Similar portfolio formation techniques have become standard
practice in the empirical finance literature.

Suppos;: that we can create portfolios in such a way that we can view the errors-in-variables
problem as being of second-order importance. We still have to determine how to assess whether there
is empirical support for the CAPM. A standard approach in the literature is to consider specific
alternative hypotheses about the variables which determine expected asset returns. According to the
CAPM, the expected return for any asset is a linear function of its beta only. Therefore, one natural
test would be to examine if any other cross-sectional variable has the ability to explain the deviations

from equation (2.1). This is the strategy that Fama and MacBeth (1973) followed by incorporating



the square of beta and measures of nonmarket (or residual time-series) variance as additional variables
in the cross-sectional regressions. More recent empirical studies have used the relative size of firms,
measured by the market value of their equity, the ratio of book-to-market-equity, and related

variables.” For example, the following model may be specified:
(25) ER;) =9, + &p; + 8y, LME;

where LME; is the natural logarithm of the total market value of the equity capital of firm i. In what
follows we will first show that these ideas extend easily to the general multiple-beta model. We will

then develop a sampling theory for the cross-sectional regression estimators.

2.3 Multiple-Beta Pricing Models and Cross-Sectional Regression Methods
According to the CAPM, the expected return on an asset is a linear function of its market

beta. A multiple-beta model asserts that the expected return is a linear function of several betas, i.e.,

where B, k=1, ..., K, are the multiple regression coefficients of the return of asset / on K economy-
wide pervasive risk factors, f;, k = 1, ..., K. The coefficient §; is the expected return on an asset that
has By = 0, for k = 1, ..., K; i.e,, it is the expected return on a zero- (multiple-) beta asset. The
coefficient &, corresponding to the kth factor, has the following interpretation: it is the expected
return differential, or premium, for a portfolio that has B; = 1 and B; = O for all j # %, measured in
excess of the zero-beta asset’s expected return. In other words, it is the expected return premium per
unit of beta risk for the risk factor, k. Ross (1976) showed that an approximate version of (2.6) will
hold in an arbitrage-free economy. Connor (1984) provided sufficient conditions for (2.6) to hold

exactly in an economy with an infinite number of assets, in general equilibrium. This version of the

? Fama and French (1992) is a prominent recent example of this approach. Berk (1994) pro-
vides a justification for using relative market value and book-to-price ratios as measures of ex-

pected returns.



multiple-beta model, the exact APT, has received wide attention in the finance literature. When the
factors, f;, are observed by the econometrician, the cross-sectional regression method can be used to
empirically evaluate the multiple-beta model.’ For example, the alternative hypothesis that the size
of the firm is related to expected returns, given the factor betas, may be examined by using cross-
sectional regressions of returns on the K factor betas and the LME,, similar to equation (2.5), and by
examining whether the coefficient . is different from zero.
24 Sampling Distributions for Coefficient Estimators:

The Two-Stage, Cross-Sectional Regression Method

In this section we follow Shanken (1992) and Jagannathan and Wang (1993, 1995) in deriving
the asymptotic distribution of the coefficients that are estimated using the cross-sectional regression
method. For the purposes of developing the sampling theory, we will work with the following

generalization of equation (2.6):

(2.7)  ER)" = T + 2 YauBic

where {A;} are observable characteristics of firm i, which are assumed to be measured without error
(the first “characteristic,” when k = 0, is the constant 1.0). One of the attributes may be the size
variable LME,. The B, are regression betas on a set of K, economic risk factors, which may include

the market index return. Equation (2.7) can be written more compactly using matrix notation as
28) p=Xy

where R, = [Ry,, ..., Ry], n = E(R), X = [A:B], and the definition of the matrices A and B and the

vector Y follow from (2.7).

* See Chen (1983), Connor and Korajczyk (1986), Lehmann and Modest (1987), and McElroy
and Burmeister (1988) for discussions on estimating and testing the model when the factor
realizations are not observable, under some additional auxiliary assumptions.
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The cross-sectional method proceeds in two stages. First, B is estimated by time-series
regressions of R, on the risk factors and a constant. The estimates are denoted by b. Let x = [A:b],
and let R denote the time-series average of the return vector R,. Let g denote the estimator of the

coefficient vector obtained from the following cross-sectional regression:
29 g=Ex)"YR

where we assume that x is of rank 1 + K, + K,. If b and R converge respectively to B and E(R) in
probability, then g will converge in probability to 7.
Black, Jensen, and Scholes (BJS) suggest estimating the sampling errors associated with the

estimator, g, as follows. Regress R, on x at each date ¢ to obtain g,, where
(2.10) g, = (*x)"'x'R,.

The BJS estimate of the covariance matrix of T"*(g — ) is given by
(2.11) v=T"2Z(g ~ g)g,— g

which uses the fact that g is the sample mean of the gs. Substituting the expression for g, given in

(2.10) into the expression for v given in (2.11) gives

(2.12) v=x)"W[T'Z(R, - AR, - RYIx(x'x)™.

To analyze the BJS covariance matrix estimator, we write the average return vector, R, as:
213) R=xy+ R-p) - (x - X).

Substitute this expression for R into the expression for g in (2.9) to obtain

(2.14) g-7=x)"¥I(R-p - ®- Pl
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Assume that b is a consistent estimate of B and that T"*(R — p) —, u and T'*(b — B) —, h, where u
and h are random variables with well-defined distributions and —,; indicates convergence in

distribution. We then have
(2.15) TY(g — ) =, (2 %'u — (x) ¥ hy,.

In (2.15) the first term on the right side is that component of the sampling error that arises from
replacing p by the sample average R. The second term is the component of the sampling error that
arises due to replacing P by its estimate b.

The usual consistent estimate of the asymptotic variance of u is given by
2.16) T'Z(R, - R)(R, - R).
Therefore, a consistent estimate of variance of the first term in (2.15) is given by
X)X [T Z(R, -R)(R, —R)'Ix(x'x)™

which is the same as the expression for the BJS estimate for the covariance matrix of the estimated
coefficients v, given in (2.12). Hence if we ignore the sampling error that arises from using estimated
betas, then the BJS covariance estimator provides a consistent estimate of the variance of the
estimator g. However, if the sampling error associated with the betas is not small, then the BJS
covariance estimator will have a bias. While it is not possible to determine the magnitude of the bias
in general, Shanken (1992) provides a method to assess the bias under additional assumptions.*
Consider the following univariate time-series regression for the return of asset i on a constant

and the kth economic factor:

4 Shanken (1992) uses betas computed from multiple regressions. The derivation which fol-
lows uses betas computed from univariate regressions, for simplicity of exposition. The two sets
of betas are related by an invertible linear transformation. Alternatively, the factors may be orth-
ogonalized without loss of generality.
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(2.17) R, = 0y + Bufi + i

We make the following additional assumptions about the error terms in (2.17): (1) the errors are mean
zero, conditional on the time series of the economic factors f;; (2) the conditional covariance of gy,
and g, given the factors, is a fixed constant oy, We denote the matrix of the {o,}; by Z,. Finally,
we assume that (3) the sample covariance matrix of the factors exists and converges in probability

to a constant positive definite matrix 2, with the typical element €2,

Theorem 2.1. (Shanken, 1992/Jagannathan-Wang, 1995)
T**(g — ) converges in distribution to a normally distributed random variable with zero mean

and covariance matrix V + W, where V is the probability limit of the matrix v given in (2.12) and

(2.18) W =X . p¥oial(Qu QS %)% Ty 2(x'x)7"
Proof. See the appendix.

Theorem 2.1 shows that in order to obtain a consistent estimate of the covariance matrix of
the BJS two-step estimator g, we first estimate v (a consistent estimate of V) by using the BJS
method. We then estimate W by its sample analogue.

Although the cross-sectional regression method is intuitively very appealing, the above
discussion shovs;s that in order to assess the sampling errors associated with the parameter estimators,
we need to make rather strong assumptions. In addition, the econometrician must take a stand on a
particular alternative hypothesis against which to reject the model. The general approach developed
in Section 4 below has, among its advantages, weaker statistical assumptions and tfle ability to handle

both unspecified as well as specific alternative hypotheses.

3. Asset Pricing Models and Stochastic Discount Factors
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Virtually all financial asset pricing models imply that any gross asset return R, ,,;, multiplied

by some market-wide random variable m,,;, has a constant conditional expectation:
3.1) Eim,R,.}=1,alli

The notation E,{.} will be used to denote the conditional expectation, given a market-wide information
set. Sometimes it will be convenient to refer to expectations conditional on a subset Z, of the market
information, which are denoted as E(.|Z). For example, Z, can represent a vector of instrumental
variables for the public information set, which are unavailable to the econometrician. When Z, is the
null information set, the unconditional expectation is denoted as E(.). If we take the expected values
of equation (3.1), it follows that versions of the same equation must hold for the expectations E(. |Z)
and E().

The random variable m,,, has various names in the literature. It is known as a stochastic
discount factor, an equivalent martingale measure, a Rador-l-Nicodym derivative, or an intertemporal
marginal rate of substitution. We will refer to an m,,; which satisfies (3.1) as a valid stochastic
discount factor. The motivation for use of this term arises from the following observation. Write

equation (3.1) as
P, = E{mX; 1}

where X; ,,, is tile payoff of asset i at time # + 1 (the market value plus any cash payments) and R;,,,
= X,,.1 / P, Equation (3.1) says that if we multiply a future payoff X, ,, by the stochastic discount
factor m,,, and take the expected value, we obtain the present value of the future payoff.

The existence of an m,,, that satisfies (3.1) says that all assets with the same payoffs have the
same price (i.e., the law of one price). With the restriction that m,,, is a strictly positive random

variable, equation (3.1) becomes equivalent to a no-arbitrage condition. The condition is that all
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portfolios of assets with payoffs that can never be negative, but are positive with positive probability,
must have positive prices.

The no-arbitrage condition does not uniquely identify m,,, unless markets are complete, which
means that there are as many linearly independent payoffs available in the securities markets as there
are states of nature at date ¢ + 1. To obtain additional insights about the stochastic discount factor and
the no-arbitrage condition, assume for the moment that the markets are complete. Given complete
markets, positive state prices are required to rule out arbitrage opportunities.’ Let g,; denote the time-z
price of a security that pays one unit at date ¢ + 1 if and only if the state of nature at ¢ + 1 is s. Then
the time-# price of a security that promises to pay {X;,,.;} units at date ¢ + 1, as a function of the state

of nature s, is given by

zs%rXi,x,tﬂ = ants(qts / nts)Xi.s,tﬂ

where 7, is the probability, as assessed at time ¢, that stafe s occurs at time ¢ + 1. Comparing this
expression with equation (3.1) shows that m,,; = g,,/ T, is the value of the stochastic discount factor
in state s, under the assumption that the markets are complete. Since the probabilities are positive,
the condition that the random variable defined by {m,,,,} is strictly positive is equivalent to the
condition that all state prices are positive.

Equation (3.1) is convenient for developing econometric tests of asset pricing models. Let R,
denote the vector of gross returns on the N assets on which the econometrican has observations. Then

(3.1) can be written as

(3.2) E{Rt+1mt+l - l} =0

5 See Debreu (1959) and Arrow (1970) for models of complete markets. See Beja (1971), Ru-
binstein (1976), Ross (1977), Harrison and Kreps (1979), and Hansen and Richard (1987) for
further theoretical discussions.
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where 1 denotes the N vector of ones and 0 denotes the N vector of zeros. The set of N equations
given in (3.2) will form the basis for tests using the generalized method of moments. It is the specific
form of m,,, implied by a model that gives the equation empirical content.

3.1 Stochastic Discount Factor Representations of the CAPM
and Multiple-Beta Asset Pricing Models

Consider the CAPM, as given by equation (2.1)
ERy.;) = & + 8,B;
where

Bi = CoV(R;y1:Rpsr) | Var(Ry,)-

The CAPM can also be expressed in the form of equation (3.1), with a particular specification of the
stochastic discount factor. To see this, expand the expected product in (3.1) into the product of the

expectations plus the covariance, and then rearrange to obtain
(3:3)  ERRy) = 1/ E(myy,) + CoV(Rye; —tyyy [ E(my,y).

Equating terms in equations (2.1) and (3.3) shows that the CAPM of equation (2.1) implies a version

of equation (3.1), where

E(Ripmyy) = 1
where |
My = Co = CilRypy
B4) c¢y=1I1 + ER,,.1)0,/ Var(R,,,,.)]1/ §,
and
¢, = 90,/ [§,Var(R,,.)]-
Equation (3.4) was originally derived by Dybvig and Ingersoll (1982).

Now consider the following multiple-beta model, which was given in equation (2.6):
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E(R;) = 8 + Zpy, . OB

It can be readily verified by substitution that this model implies the following stochastic discount

factor representation.

EQRymy,y) =1
where

My = Co + Cifiyar + oo + Cfiemn
with
(B3.5) ¢y =1[1+Zf8E(f) / Var(f)}]/ d,
and

¢ = —15,/ 8Var(f)}, j = 1, .. K.

The preceding results apply to the CAPM and multiple-beta models, interpreted as statements
about the unconditional expected returns of the assets. These models are also interpreted as statements
about conditional expected returns in some tests, where the expectations are conditioned on
predetermined, publicly available information. All of the analysis of this section can be interpreted
as applying to conditional expectations, with the appropriate changes in notation. In this case, the

parameters cg, ¢;, Op O;, €tc. will be functions of the time-¢ information set.

3.2 Other Examples of Stochastic Discount Factors

In equilibrium asset pricing models, equation (3.1) arises as a first-order condition for a
consumer-investor’s optimization problem. The agent maximizes a lifetime utility function of
consumption (including possibly a bequest to heirs). Denote this function by V(.). If the allocation
of resources to consumption and to investment assets is optimal, it is not possible to obtain higher
utility by changing the allocation. Suppose that an investor considers reducing consumption at time

t to purchase more of (any) asset. The utility cost at time ¢ of the forgone consumption is the marginal
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utility of consumption expenditures C,, denoted by (dV / 0C,) > 0, multiplied by the price P;, of the
asset, measured in the same units as the consumption expenditures. The expected utility gain of

selling the share and consuming the proceeds at time ¢ + 1 is
E{(P;u, + D;, )@V 7 9C,))}

where D,,,, is the cash flow or dividend paid at time 7. If the allocation maximizes expected utility,

the following must hold:

P, E{(0V/9C)} = E{(P;,,, + D;;,;y) @V /3C,,)}.
This intertemporal Euler equation is equivalent to equation (3.1), with
(3.6) m,, =@V/dC,,) /! E{(@V/IC)}.

The m,, in equation (3.6) is the intertemporal marginal rate of substitution (IMRS) of the
representative consumer. The rest of this section shows. how many models in the asset pricing
literature are special cases of (3.1), where m,,, is defined by equation (3.6).5

If a representative consumer’s lifetime utility function V(.) is time-separable, the marginal
utility of consumption at time ¢, (9V / dC), depends only on variables dated at time z. Lucas (1978)
and Breeden (1979) derived consumption-based asset pricing models of the following type, assuming

that the preferences are time-separable and additive:

V= ztBtu(Cx)

6 Asset pricing models typically focus on the relation of security returns to aggregate quan-
tities. It is therefore necessary to aggregate the Euler equations of individuals to obtain equilib-
rium expressions in terms of aggregate quantities. Theoretical conditions which justify the use of
aggregate quantities are discussed by Gorman (1953), Wilson (1968), Rubinstein (1974),
Constantinides (1982), Lewbel (1989), Luttmer (1993), and Constantinides and Duffie (1994).
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where [} is a time discount parameter and u(.) is increasing and concave in current consumption C,.

A convenient specification for u(.) is
B7 wC)=C"*"-1/1-q.

In equation (3.7), o > O is the concavity parameter of the period utility function. This function
displays constant relative risk aversion equal to o.” Based on these assumptions and using aggregate
consumption data, a number of empirical studies test the consumption-based asset pricing model.®
Dunn and Singleton (1986) and Eichenbaum, Hansen, and Singleton (1988), among others,
model consumption expenditures that may be durable in nature. Durability introduces nonseparability
over time, since the flow of consumption services depends on the consumer’s previous expenditures,
and the utility is defined over the services. Current expenditures increase the consumer’s future utility,
if the expenditures are durable. The consumer optimizes over the expenditures C,; this accounts for
the fact that durability implies that the marginal utility, (61} / 9C,), depends on variables dated other
than date ¢. |
Another form of time-nonseparability arises if the utility function exhibits habit persistence.
Habit persistence means that consumption at two points in time are complements. For example, the
utility of current consumption is evaluated relative to what was consumed in the past. Such models
are derived by Ryder and Heal (1973), Becker and Murphy (1988), Sundaresan (1989), Constantinides

(1990), Detemple and Zapatero (1991), and Novales (1992), among others.

7 Relative risk aversion in consumption is defined as —Cu”(C) / u'(C). Absolute risk aversion
is ~u”(C) / ¥'(C), where a prime (") denotes a derivative. Ferson (1983) studies a consumption-
based asset pricing model with constant absolute risk aversion.

8 Substituting (3.7) into (3.6) shows that m,,; = B(C,,; / C)™. Empirical studies of this model

include Hansen and Singleton (1982, 1983), Ferson (1983), Brown and Gibbons (1985),
Jagannathan (1985), Ferson and Merrick (1987), and Wheatley (1988).
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Ferson and Constantinides (1991) model both the durability of consumption expenditures and
habit persistence in consumption services. They show that the two combine as opposing effects. In

an example where the effect is truncated at a single lag, the derived utility of expenditures is
(3.8) V=(1 - Zp(C, +bC. )™

The marginal utility at time ¢ is

(3.9) (@V/9C) = B(C, + bC, )™ + B*'BE{(C,,, + bC) "}

The coefficient b is positive and measures the rate of depreciation if the good is durable and there
is no habit persistence. If habit persistence is present and the good is nondurable, this implies that the
lagged expenditures enter with a negative effect (b < 0).

Heaton (1995) and Ferson and Harvey (1992) consider a form of time-nonseparability which

emphasizes seasonality. The utility function is
(1 - o) ZHC, + bC, Y™™

where the consumption expenditure decisions are assumed to be quarterly. The subsistence level (in
the case of habit persistence) or the flow of services (in the case of durability) is assumed to depend
only on the consumption expenditure in the same quarter of the previous year.

Abel (1990) studies a form of habit persistence in which the consumer evaluates current
consumption relative to the aggregate consumption in the previous period, consumption that he or she
takes as exogenous. The utility function is like equation (3.8), except that the “habit stock,” bC,_,
refers to the aggregate consumption. The idea is that people care about “keeping up with the Joneses.”
Campbell and Cochrane (1995) also develop a model in which the habit stock is taken as exogenous

by the consumer. This approach results in a simpler and more tractable model, since the consumer’s
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optimization does not have to take account of the effects of current decisions on the future habit
stock.

Epstein and Zin (1989, 1991) consider a class of recursive preferences which can be written
as V,= F(C,CEQ(V,,)). CEQ(.) is a time-¢ “certainty equivalent” for the future lifetime utility V,,,.
The function F(.,CEQ/.)) generalizes the usual expected utility function of lifetime consumption and
may be non-time-separable.

Epstein and Zin (1989) study a special case of the recursive preference model in which the

preferences are

(3.10) V, = [(1-B)CT + BE(V,,, '™y =)™

They show that when p # 0 and 1 — o # 0, the IMRS for a representative agent becomes
(B.11) [B(Cyy / CY 1P/ {R, PP

where R,,,,, is the gross market portfolio return. The coefficient of relative risk aversion for timeless
consumption gambles is o, and the elasticity of substitution for deterministic consumption is (1 — p)™.
If o. = 1 — p, the model reduces to the time-separable, power utility model. If o = 1, the log utility
model of Rubinstein (1976) is obtained.

In summary, many asset pricing models are special cases of the equation (3.1). Each model
specifies that a’particular function of the data and the model parameters is a valid stochastic discount

factor. We now turn to the issue of estimating the models stated in this form.

4. The Generalized Method of Moments

In this section we provide an overview of the Generalized Method of Moments and a brief
review of the associated asymptotic test statistics. We then show how the GMM is used to estimate

and test various specifications of asset pricing models.
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4.1 An Overview of the Generalized Method of Moments in Asset Pricing Models

Let x,,, be a vector of observable variables. Given a model which specifies m,,; = m(6,x,,,),
estimation of the parameters 8 and tests of the model can then proceed under weak assumptions,
using the GMM as developed by Hansen (1982) and illustrated by Hansen and Singleton (1982) and

Brown and Gibbons (1985). Define the following model error term:
(41) Ui = m(e’xul)Ri,nl - L

The equation (3.1) implies that E{u;,,,} = O for all i. Given a sample of N assets and T time periods,
combine the error terms from (4.1) into a TxN matrix u, with typical row u,,,". By the law of iterated
expectations, the model implies that E(u;,,, |Z) = 0 for all i and ¢ (for any Z, in the information set
at time 7), and therefore E(u,,,Z) = O for all ¢. The condition E(x,,,Z,) = O says that u,,; is orthogonal
to Z, and is therefore called an orthogonality condition. These orthogonality conditions are the basis
of tests of asset pricing models using the GMM.

A few points deserve emphasis. First, GMM estimates and tests of asset pricing models are
motivated by the implication that E(u;,, |Z) = 0, for any Z, in the information set at time 7. However,
the weaker condition E(%,,,Z;) = 0, for a given set of instruments Z, is actually used in the estimation.
Therefore, GMM tests of asset pricing models have not exploited all of the predictions of the theories.
We believe that further refinements to exploit the implications of the theories more fully will be
useful.

Empirical work on asset pricing models relies on rational expectations, interpreted as the
assumption that the expectation terms in the model are mathematical conditional expectations. For
example, the rational expectations assumption is used when the expected value in equation (3.1) is

treated as a mathematical conditional expectation to obtain expressions for E(.|Z) and E(.). Rational
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expectations implies that the difference between observed realizations and the expectations in the
model should be unrelated to the information that the expectations in the model are conditioned on.

Equation (3.1) says that the conditional expectation of the product of m,,, and R,,,, is the
constant 1.0. Therefore, the error term 1 — m,R;,,; in equation (4.1) should not be predictably
different from zero when we use any information available at time ¢. If there is variation over time
in a return k,-'m that is predictable using instruments Z,, the model implies that the predictability is
removed when R, ,,; is multiplied by a valid stochastic discount factor, m,,;. This is the sense in which
conditional asset pricing models are asked to “explain” predictable variation in asset returns. This idea
generalizes the “random walk” model of stock values, which implies that stock returns should be
completely unpredictable. That model is a special case which can be motivated by risk neutrality.
Under risk neutrality the IMRS is a constant. In this case, equation (3.1) implies that the return R;
should not differ predictably from a constant.

GMM estimation proceeds by defining an NXL matrix of sample mean orthogonality
conditions, G = (u'Z / T), and letting g = vec(G), where Z is a TxL matrix of observed instruments
with typical row Z/, a subset of the available information at time z.° The vec(.) operator means to
partition G into row vectors, each of length L: (k,, ks, ..., Ay). Then one stacks the As into a vector,
g, with length equal to the number of orthogonality conditions, NL. Hansen’s (1982) GMM estimates
of © are obtained by searching for parameter values that make g close to zero by minimizing a
quadratic form g’'Wg, where W is an NLxNL weighting matrix.

Somewhat more generally, let u,,,(8) denote the random N vector R,,,m(0,x,,,) — 1, and define

g48) = T" Z,(u(8) ® Z,_,). Let 8, denote the parameter values that minimize the quadratic form

® This section assumes that the same instruments are used for each of the asset equations. In
general, each asset equation could use a different set of instruments, which complicates the nota-
tion.
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g7 A8, where A, is any positive definite NLxNL matrix that may depend on the sample, and let J;
denote the minimized value of the quadratic form g;/A;g;. Jagannathan and Wang (1995) show that
J will have a weighted Chi-Square distribution which can be used for testing the hypothesis that 3.1)

holds.

Theorem 4.1 (Jagannathan-Wang, 1993). Suppose that the matrix A, converges in probability to a
constant positive definite matrix A. Assume also that \/Tgr(eo) —,; N(0,S), where N(.,.) denotes the
multivariate normal distribution, 8, are the true parameter values, and S is a positive definite matrix.

Let
D = E[9g,/ 26]|6 = 6,
and let
0 = (S*HAMI - (A% D(D'ADY"'D'AHIAM(SH)

where A* and S* are the upper triangular matrices from the Cholesky decompositions of A and S.
Then the matrix Q has NL-dim(6) nonzero, positive eigenvalues. Denote these eigenvalues by A;, i

=1, 2, ..., NL-dim(0). Then J; converges to

At + - F Mg dimey XNLime®)
where ¥, i = 1, 2, ..., NL-dim(0) are NL-dim(8) independent random variables, each with a Chi-
Square distribution with one degree of freedom.

Proof. See Jagannathan and Wang (1993).

Notice that when the matrix A is W = S, the matrix Q'is idempotent, of rank NL-dim(8).
Hence the nonzero eigenvalues of Q are unity. In this case, the asymptotic distribution reduces to a

simple Chi-Square distribution with NL-dim(@) degrees of freedom. This is the special case
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considered by Hansen (1982), who originally derived the asymptotic distribution of the Ji-statistic.
The J,-statistic and its extension, as provided in theorem 4.1, provide a goodness-of-fit test for models
estimated by the GMM.

Hansen (1982) shows that the estimators of © that minimize g'Wg are consistent and
asymptotically normal, for any fixed W. If the weighting matrix W is chosen to be the inverse of a
consistent estimate of the covariance matrix of the orthogonality conditions S, the estimators are
asymptotically efficient in the class of estimators that minimize g’Wyg for fixed Ws. The asymptotic

variance matrix of this optimal GMM estimator of the parameter vector is given as
(4.2) Cov(8) = [E(dg / 0 WE(dg / 90)]"

where dg / 90 is an NLxdim(0) matrix of derivatives. A consistent estimator for the asymptotic
covariance of the sample mean of the orthogonality conditions is used in practice. That is, we replace
W in (4.2) with Cov(g)™ and replace E(dg / 98) with its sample analogue. An example of a consistent

estimator for the optimal weighting matrix is given by Hansen (1982) as

43) Cov(g) = [(1/ T) Z, Z(uitry) ® (ZZ))]

where ® denotes the Kronecker product. A special case that often proves useful arises when the
orthogonality conditions are not serially correlated. In that special case, the optimal weighting matrix

is the inverse of the matrix Cov(g), where

@4) Cov(g) = [(1/ D Zltuatht) ® (ZZ)).

The GMM weighting matrices originally proposed by Hansen (1982) have some drawbacks. The
estimators are not guaranteed to be positive definite, and they may have poor finite sample properties
in some applications. A number of studies have explored alternative estimators for the GMM

weighting matrix. Prominent examples include Newey and West (1987a), who suggest weighting the
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autocovariance terms in (4.3) with Bartlett weights to achieve a positive semi-definite matrix.
Additional refinements to improve the finite sample properties are proposed by Andrews (1991),

Andrews and Monahan (1992), and Ferson and Foerster (1994).

4.2 Testing Hypotheses with the GMM

As we noted above, the J~statistic provides a goodness-of-fit test for a model that is estimated
by the GMM, when the model is overidentified. Hansen’s J;-statistic is the most commonly used test
in the finance literature that has used the GMM. Other standard statistical tests based on the GMM
are also used in the finance literature for testing asset pricing models. One is a generalization of the
Wald test, and a second is analogous to a likelihood ratio test statistic. Additional test statistics based
on the GMM are reviewed by Newey (1985) and Newey and West (1987b).

For the Wald test, consider the hypothesis to be tested as expressed in the M-vector valued
function H(0) = 0, where M < dim(8). The GMM estima—tes of © are asymptotically normal, with
mean 0 and variance matrix Cov(6). Given standard regularity conditions, it follows that the estimates
of H are asymptotically normal, with mean zero and variance matrix H,Cov(8)H,’, where subscripts

denote partial derivatives, and that the quadratic form
TH'[H,Cov(®)H,T'H

is asymptoticaliy Chi-Square, providing a standard Wald test.

A likelihood ratio type test is described by Newey and West (1987b), Eichenbaum, Hansen,
and Singleton (1988, appendix C), and Gallant (1987). Newey and West (1987b) call this the D test.
Assume that the null hypothesis implies that the orthogonality conditions E(g’) = O hold, while, under
the alternative, a subset E(g) = 0 hold. For example, g° = (g,4). When we estimate the model under
the null hypothesis, the quadratic form g”W'g" is minimized. Let W',, be the inverse of the upper left

block of W*; that is, let it be the estimate of Cov(g) under the null. When we hold this matrix fixed
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the model can be estimated under the alternative by minimizing g’W',,g. The difference of the two

quadratic forms
Tig"Wg™ — g'W 8]

is asymptotically Chi-Square, with degrees of freedom equal to M if the null hypothesis is true.

Newey and West (1987b) describe additional variations on these tests.

4.3 Dlustrations: Using the GMM to Test the Conditional CAPM

The CAPM imposes nonlinear overidentifying restrictions on the first and second moments
of asset returns. These restrictions can form a basis for econometric tests. To see these restrictions
more clearly, notice that if an econometrician knows or can estimate Cov(R;,R,,), E(R,,), Var(R,,),
and E(R,,), it is possible to compute E(R;) from the CAPM, using equation (2.1). Given a direct
sample estimate of E(R,), the expected return is overidentified. It is possible to use the overidentifi-
cation to construct a test of the CAPM by asking if the expected return on the asset is different from
the expected return assigned by the model. In this section we illustrate such tests by using both the
traditional, return-beta formulation and the stochastic discount factor representation of the CAPM.

These examples extend easily to the multiple-beta models.

4.3.1 Static or Unconditional CAPMs

If we make the assumption that all the expectation terms in the CAPM refer to the uncondi-
tional expectations, we have an unconditional version of the CAPM. It is straightforward to estimate
and then test an unconditional version of the CAPM, using equation (3.1) and the stochastic discount

factor representation given in equation (3.4). The stochastic discount factor is

Myy = Co + Ry
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where ¢, and ¢, are fixed parameters. Using only the unconditional expectations, the model implies

that
E{ (Co + clRm:+l)R:+l -1}=0

where R,,, is the vector of gross asset returns. The vector of sample orthogonality conditions is

8r ='gT(co,c1) =(1/7) Zr{(co + ClRmz+l)Rt+l - 1}

With assets N > 2, the number of orthogonality conditions is N and the number of parameters is 2,
so the Jr-statistic has N — 2 degrees of freedom. Tests of the unconditional CAPM using the
stochastic discount factor representation are conducted by Jagannathan and Wang (1995) and Carhart
et al. (1995), who reject the model after using monthly data for the postwar United States.

Tests of the unconditional CAPM may also be conducted using the linear, return-beta
formulation of equation (2.1) and the GMM. Let r, = R, — R,,1 be the vector of excess returns, where
R,, is the gross return on some reference asset and 1 is an N vector of ones; also let u, = r, ~ Br,,
where f is the N vector of the betas of the excess returns, relative to the market, and r,,, = R,,, = R,

is the excess return on the market portfolio. The model implies that
E(w) = E(ur,,) = 0.

Let the instruments be Z, = (1,r,,).” The sample orthogonality condition is then
&P =T Z(r, - Pr) ® Z_,.

The number of orthogonality conditions is 2N and the number of parameters is N, so the model is
overidentified and may be tested using the J;-statistic.

An alternative approach to testing the model using the return-beta formulation is to estimate
the model under the hypothesis that expected returns depart from the predictions of the CAPM by

vector of parameters o, which are called Jensen’s alphas. Redefining u, = r, — o — PBr,,,, the model
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has 2N parameters and 2N orthogonality conditions, so it is exactly identified. It is easy to show that
the GMM estimators of o and P are the same as the OLS estimators, and equation (4.4) delivers
White’s (1980) heteroskedasticity-consistent standard errors. The CAPM may be tested using a Wald
test or the D-statistic, as described above.

Tests of the unconditional CAPM using the linear return-beta formulation are conducted with

the GMM b-y MacKinlay and Richardson (1991), who reject the model for monthly U.S. data.

4.3.2 Conditional CAPMs

Empirical studies that rejected the unconditional CAPM, as well as mounting evidence of
predictable variation in the distribution of security rates of return, led to empirical work on
conditional versions of the CAPM starting in the early 1980s. In a conditional asset pricing model
it is assumed that the expectation terms in the model are conditional expectations, given a public
information set that is represented by a vector of predéterrrﬁned instrumental variables Z,. The
multiple-beta models of Merton (1973) and Cox, Ingersoll, and Ross (1985) are intended to accommo-
date conditional expectations. Merton (1973, 1980) and Cox-Ingersoll-Ross also showed how a
conditional version of the CAPM may be derived as a special case of their intertemporal models.
Hansen and Richard (1987) describe theoretical relations between conditional and unconditional
versions of mean-variance efficiency.

The earliest empirical formulations of conditional asset pricing models were the latent variable
models, developed by Hansen and Hodrick (1983) and Gibbons and Ferson (1985) and later refined
by Campbell (1987) and Ferson, Foerster, and Keim (1993). These models allow time-varying
expected returns, but maintain the assumption that the conditional betas are fixed parameters. Consider

the linear, return-beta representation of the CAPM under these assumptions, writing E(r,|Z_.,) =
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BE(7,;|Z.-;). The returns are measured in excess of a risk-free asset. Let r;, be some reference asset

with nonzero J,, so that
E(ry|Z.) = BE(rw|Z,0).

Solving this expression for E(r,,|Z,_,) and substituting, we have
E(r|Z.)) = CE(r,|Z.)

where C = (B ./ B,) and ./ denotes element-by-element division. With this substitution, the expected
market risk premium is the latent variable in the model, and C is the N vector of the model
parameters. When we form the error term u, = r, — Cry,, the model implies E(#,|Z,_,) = 0 and we can
estimate and test the model by using the GMM. Gibbons and Ferson (1985) argued that the latent
variable model is attractive in view of the difficulties in measuring the true market portfolio, but
Wheatley (1989) emphasized that it remains necessary to assume that ratios of the betas, measured
with respect to the unobserved market portfolio, are constant parameters.

Campbell (1987) and Ferson and Foerster (1995) show that a single-beta latent variable model
is rejected by the data. This finding rejects the hypothesis that there is a (conditional) minimum
variance portfolio such that the ratios of conditional betas on this portfolio are fixed parameters.
Therefore, the empirical evidence suggests that conditional asset pricing models should be consistent
with either (1) ‘a time-varying beta or (2) more than one beta for each asset.'”

Conditional, multiple-beta models with constant betas are examined empirically by Ferson and
Harvey (1991), Evans (1994), and Ferson and Korajczyk (1995). They reject such models after the

usual statistical tests but find that they still capture a large fraction of the predictability of stock and

1 A model with more than one fixed beta, and with time-varying risk premiums, is generally
consistent with a single, time-varying beta for each asset. For example, assume that there are two
factors with constant betas and time-varying risk premiums, where a time-varying combination of
the two factors is a minimum-variance portfolio.



30

bond returns over time. By allowing for time-varying betas, these studies find that the time-variation
in betas contributes a relatively small amount to the time-variation in expected asset returns. Intuition
for this finding can be obtained by considering the following approximation. Suppose that time-
variation in expected excess returns is E(r|Z) = AP, where A is a vector of time-varying expected risk
premiums for the factors and B is a matrix of time-varying betas. Using a Taylor series, we can

approximaté
Var[E(r|2)] = ER)'Var[ME(B) + E(L) Var[BIEQL).

The first term in the decomposition reflects the contribution of the time-varying risk premiums; the
second reflects the contribution of time-varying betas. Since the average beta E(B) is on the order of
1.0 in monthly data, while the average risk premium E(A) is typically less than 0.01, the first term
dominates the second term. This means that time-variation in conditional betas is less important than
time-variation in expected risk premiums, from the perspeétive of modeling predictable variation in
expected asset returns.

While from the perspective of modeling predictable time-variation in asset returns, time-
variation in conditional betas is not as important as time-variation in expected risk premiums, this
does not imply that beta variation is empirically unimportant. From the perspective of modeling the
cross-sectional -variation in expected asset returns, beta variation over time may be very important.

To see this, consider the unconditional expected excess return vector, obtained from the model as
E{E(r|Z)} = E{AB} = E(QME(B) + Cov(L,B).

Viewed as a cross-sectional relation, the term Cov(A,B) may differ significantly in a cross section of
assets. Therefore, the implications of a conditional version of the CAPM for the cross section of

unconditional expected returns may depend importantly on common time-variation in betas and
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expected market risk premiums. The empirical tests of Jagannathan and Wang (1995) suggest that this
is the case.
Harvey (1989) replaced the constant beta assumption with the assumption that the ratio of the

expected market premium to the conditional market variance is a fixed parameter, as in
E(rplZ,) | Var(rylZ,) = Y.
The conditional expected returns may then be written according to the conditional CAPM as

E(r,|Z,-) = YCov(r, 1l Z,0)-

Harvey’s version of the conditional CAPM is motivated by Merton’s (1980) model, in which the ratio
v, called the market price of risk, is equal to the relative risk aversion of a representative investor in
equilibrium. Harvey also assumes that the conditional expected risk premium on the market (and the

conditional market variance, given fixed ) is a linear function of the instruments, as in
E(l" mtth-l) = 8m,Zt--l

where 8, is a coefficient vector. Define the error terms v, = 7, — 8,/Z,; and w; = r(l - vY). The
model implies that the stacked error term u, = (v,w,) satisfies Ew,|Z,_,), so it is straightforward to
estimate and then test the model using the GMM. Harvey (1989) rejects this version of the conditional
CAPM for monthly data in the U.S. In Harvey (1991) the same formulation is rejected when applied
using a world market portfolio and monthly data on the stock markets of 21 developed countries.
The conditional CAPM méy be tested using the stochastic discount factor representation given
by equation (3.4): m,,; = ¢, — €1 Rpi- In this case the coefficients ¢, and c,, are measurable functions
of the information set Z, To implement the model empirically it is necessary to specify functional
forms for the ¢,, and c,,. From the expression (3.4) it can be seen that these coefficients are nonlinear

functions of the conditional expected market return and its conditional variance. As yet there is no
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theoretical guidance for specifying the functional forms. Cochrane (1992) suggests approximating the
coefficients using linear functions, and this approach is followed by Carhart et al. (1995), who reject
the conditional CAPM for monthly U.S. data.

Jagannathan and Wang (1993) show that the conditional CAPM implies an unconditional two-

factor model. They show that
my, = 4 + alE(rth lIt) + Rmt+1

(where I, denotes the information set of investors and a, and a, are fixed parameters) is a valid
stochastic discount factor in the sense that E(R;,,;m,,,) = 1 for this choice of m,,. Using a set of
observable instruments Z,, and assuming that E(r,,,,|Z) is a linear function of Z, they find that their
version of the model explains the cross section of unconditional expected returns better than does an
unconditional version of the CAPM. Bansal and Viswanathan (1993) develop conditional versions of
the CAPM and multiple-factor models in which the stocﬁastic discount factor m,,; is a nonlinear
function of the market or factor returns. Using nonparametric methods, they find evidence to support
the nonlinear versions of the models. Bansal, Hsieh, and Viswanathan (1993) compare the
performance of nonlinear models with linear models, using data on international stocks, bonds, and
currency returns, and they find that the nonlinear models perform better. Additional empirical tests
of the conditional CAPM and multiple-beta models, using stochastic discount factor representations,
are beginning to appear in the literature. We expect that future studies will further refine the relations

among the various empirical specifications.

5. Model Diagnostics
We have discussed several examples of stochastic discount factors corresponding to particular
theoretical asset pricing models, and we have shown how to test whether these models assigned the

right expected returns to financial assets. The stochastic discount factors corresponding to these
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models are particular parametric functions of the data observed by the econometrician. While
empirical studies based on these parametric approaches have led to interesting insights, the parametric
approach makes strong assumptions about the economic environment. In this section, we discuss some

alternative econometric approaches to the problem of asset pricing models.

5.1 Moment Inequality Restrictions

Hansen and Jagannathan (1991) derive restrictions from asset pricing models while assuming
as little structure as possible. In particular, they assume that the financial markets obey the law of one
price and that there are no arbitrage opportunities. These assumptions are sufficient to imply that there
exists a stochastic discount factor m,,, (which is almost surely positive, if there is no arbitrage) such
that equation (3.1) is satisfied.

Note that if the stochastic discount factor is a degenerate random variable (i.e., a constant),
then equation (3.1) implies that all assets must earn the same expected return. If assets earn different
expected returns, then the stochastic discount factor cannot be a constant. In other words, cross-
sectional differences in expected asset returns carry implications for the variance of any valid
stochastic discount factor, which satisfies equation (3.1). Hansen and Jagannathan make use of this
observation to derive lower bounds on the volatility of stochastic discount factors. Shiller (1979,
1981), Singleton (1980), and Leroy and Porter (1981) derive related volatility bounds in specific
models, and their empirical work suggests that fhe stochastic discount factors implied by these simple
models are not volatile enough to explain expected returns across assets. Hansen and Jagannathan
(1991) show how to use volatility bounds as a general diagnostic device.

In what follows we derive the Hansen and Jagannathan (1991) bounds and discuss their
empirical application. To simplify the exposition, we focus on an ﬁnconditional version of the bounds,

using only the unconditional expectations. We posit a hypothetical, unconditional risk-free asset with
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return R, = E(m,,;)”". We take the value of R;, or equivalently E(m,,;), as a parameter to be varied as
we trace out the bounds.

The law of one price guarantees the existence of some stochastic discount factor which
satisfies equation (3.1). Consider the following projection of any such m,,; on the vector of gross asset

returns, R,,;:

(51) mx+1 = Rt-i-l’B + €z+1
where

E(e.R.1) =0

and where B is the projection coefficient vector. Multiply both sides of equation (5.1) by R,,, and take
the expected value of both sides of the equation, using E[R,,.E,,,] = 0, to arrive at an expression
which may be solved for P. Substituting this expression back into (5.1) gives the “fitted values” of

the projection as
(5.2) m*t+1 =R.B= Rz+1’E(R:+1R:+1')‘I.1_-

By inspection, the m",,; given by equation (5.2) is a valid stochastic discount factor, in the sense that
equation (3.1) is satisfied when m’,,; is used in place of m,,. We have therefore constructed a
stochastic discount factor m’,,, that is also a payoff on an investment position in the N given assets,
where the vector E(R,,,R,,;")"1 provides the weights. This payoff is the unique linear least squares
approximation of every admissible stochastic discount factor in the space of available asset payoffs.

Substituting m’",,, for R,,,’B in equation (5.1) shows that we may write any stochastic discount

factor, m,,,, as

*
My =M g+ &y
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where E(g,,m,,) = 0. It follows that Var(m,,;) = Var(m",,). This expression is the basis of the
Hansen-Jagannathan bound on the variance of m,,,. Since m’,,, depends only on the second moment
matrix of the N returns, the lower bound depends only on the assets available to the econometrician
and not on the particular asset pricing model that is being studied. To obtain an explicit expression
for the variance bound in terms of the underlying asset-return moments, substitute from the previous

expressions to obtain

Var(m,,,) 2 Var(m',,,)
(5.3) = B'VarR,,.)B
= [Cov(m,R')Var(R)'TVar(R) [Var(R)'Cov(m,R)]Cov(m,R’)

= [1 - EmER)Var(R)[1 — E@m)ER)]

where the time subscripts are suppressed to conserve notation and the last line follows from E(mR)
= 1 = E(m)E(R) + Cov(m,R). As we vary the hypothetical.values of E(m) = R, the equation (5.3)
traces out a parabola in E(m), o(m) space, where o(m) is the standard deviation of m,,,. If we place
o(m) on the y axis and E(m) on the x axis, the Hansen-Jagannathan bounds resemble a cup, and the
implication is that any valid stochastic discount factor m,,; must have a mean and standard deviation
that places it within the cup.

The lower bound on the volatility of a stochastic discount factor, as given by equation (5.3),
is closely related to the standard mean-variance analysis that has long been used in the financial
economics literature. To see this, recall that if r = R — R, is the vector of excess returns, then (3.1)

implies that
0 = E(mR) = E(m)E(r) + po(m)c(r).
Since —1 < p < 1, we have that

o(m) / E(m) 2 E(r;)) | o(ry)



36

for all i. The right side of this expression is the Sharpe ratio for asset i. The Sharpe ratio is defined
as the expected excess return on an asset, divided by the standard deviation of the excess return (see
Sharpe 1994 for a recent discussion of this ratio). Consider plotting every portfolio that can be formed
from the N assets, in the Standard Deviation (x axis) — Mean (y axis) plane. The set of such portfolios
with the smallest possible standard deviation for a given mean return is the minimum-variance
boundary. Consider the tangent to the minimum-variance boundary from the point 1/E(m) on the y
axis. The tangent point is a portfolio of the asset returns, and the slope of this tangent line is the
maximum Sharpe ratio that can be attained with a given set of N assets and a given risk-free rate, R,
= 1/E(m). The slope of this line is also equal to R, multiplied by the Hansen-Jagannathan lower bound

on o(m) for a given E(m) = Rf‘l. That is, we have that
o(m) = E(m)|Max{E(r)) / o(r)}|

for the given R,

The preceding analysis is based on equation (3.1), which is equivalent to the law of one price.
If there are no arbitrage opportunities, it implies that m,,, is a strictly positive random variable.
Hansen and Jagannathan (1991) show how to obtain tighter bounds on the standard deviation of m,,,
by making use of the restriction that there are no arbitrage opportunities. They also show how to
incorporate conditioning variables into the analysis. Snow (1991) extends the Hansen-Jagannathan
analysis to include higher moments of the asset returns. His extension is based on the Holder

inequality, which implies that for given values of 6 and p such that

1B8+1p=1
then

E(@mR) < E(m®)PE(RP)'.
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Cochrane and Hansen (1992) refine the Hansen-Jagannathan bounds to consider information about
the correlation between a given stochastic discount factor and the vector of asset returns. This
provides a tighter set of restrictions than the original bounds, which only make use of the fact that

the correlation must be between —1 and + 1.

5.2 Statistical Inference for Moment Inequality Restrictions

Cochrane and Hansen (1992), Burnside (1994), and Cecchetti, Lam, and Mark (1994) show
how to take sampling errors into account when examining whether a particular candidate stochastic
discount factor satisfies the Hansen-Jagannathan bound. In what follows we will outline a computation
which allows for sampling errors, following the discussion in Cochrane and Hansen (1992).

Assume that the econometrician has a time series of T observations on a candidate for the
stochastic discount factor, denoted by y, and the N asset returns R,. We also assume that the risk-free
asset is not one of the N assets. Hence v = E(m) = /R, is an unknown parameter to be estimated.
Consider a linear regression of m,,, onto the unit vector and the vector of asset returns as m,,; = O
+ R/B + u,,. We use the regression function in the following system of population moment

conditions:

(54) E(@+R/B)=v
ERO + RR/B) = Ly
Ey)=v
El(o. + R/BY"] - Ely/1 < 0.

The first equation says that the expected value of m, = o + R/B = v. The second equation says that
the regression function for m, is a valid stochastic discount factor. The third equation says that v is

the expected value of the particular candidate discount factor that we wish to test. The fourth equation
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states that the Hansen-Jagannathan bound is satisfied by the particular candidate stochastic discount
factor.

We can estimate the N + 2 parameters v and o, and the N vector B, using the N + 3 equations
in (5.4), by treating the last inequality as an equality and using the GMM. Treating the last equation
as an equality corresponds to the null hypothesis that the mean and variance of y, place it on the
Hansen-Jagannathan boundary. Under the null hypothesis that the last equation of (5.4) holds as an
equality, the minimized value of the GMM criterion function J;, multiplied by T, has a Chi-Square
distribution with one degree of freedom. Cochrane and Hansen (1992) suggest testing the inequality

relation using the one-sided test.

5.3 Specification Error Bounds

The methods we have examined so far are developed, for the most part, under the null
hypothesis that the asset pricing model under consideration by the econometrician assigns the right.
prices (or expected returns) to all assets. An alternative is to assume that the model is wrong and
examine how wrong the model is. In this section we will follow Hansen and Jagannathan (1994) and
discuss one possible way to examine what is missing in a model and assign a scalar measure of the
model’s misspecification.'!

Let y, denote the candidate stochastic discount factor corresponding to a given asset pricing
model, and let m’, denote the unique stochastic discount factor that we constructed earlier, as a

combination of asset payoffs. We assume that E[y,R,] does not equal 1, the N vector of ones; i.e.,

1 GMM-based model specification tests are examined in a general setting by Newey (1985).
Other related work includes Boudoukh, Richardson, and Smith (1993), who compute approximate
bounds on the probabilities of the test statistics in the presence of inequality restrictions. Chen and
Knez (1992) develop nonparametric measures of market integration by using related methods. Han-
sen, Heaton, and Luttmer (1995) show how to compute specification error and volatility bounds
when there are market frictions such as short-sale constraints and proportional transaction costs.
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the model does not correctly price all of the gross returns. We can project y, on the N asset returns
to get y, = R/o + u,, and project m", on the vector of asset returns to get m", = R/B + €, Since the
candidate y, does not correctly price all of the assets, then o and B will not be the same. Define p,
= (B — )R, as the modifying payoff to the candidate stochastic discount factor y,. Clearly, (y, + p,)
is a valid stochastic discount factor, satisfying equation (3.1). Hansen and Jagannathan (1994) derive
speciﬁcatiofl tests based on the size of the modifying payoff, which measures how far the model’s
candidate for a stochastic discount factor y, is from a valid stochastic discount factor. Hansen and
Jagannathan (1994) show that a natural measure of this distance is 8 = E(p?), which provides an
economic interpretation for the model’s misspecification. Payoffs that are orthogonal to p, are
correctly priced by the candidate y,, and E(p?) is the maximum amount of mispricing by using y, for
any payoff normalized to have a unit second moment. The modifying payoff p, is also the minimal
modification that is sufficient to make y, a valid stochastic discount factor.

Hansen and Jagannathan (1994) consider an estimator of the distance measure 8 given as the

solution to the following maximization problem:
(5.5) &,=Max, T Iy} - (3, + WR)* + 20/ 1%z .

If o is the solution to (5.5), then the estimate of the modifying payoff is o;'R,. It can be readily
verified that the first-order condition to (5.5) implies that o/'R, satisfies the sample counterpart to the
asset pricing equation (3.1).

To obtain an estimate of the sampling error associated with the estimated value 8, consider

u = yt2 - O’t + aT’Rt)z + 20(’r,llv

The sample mean of u, is 8;°. We can obtain a consistent estimator of the variance of 8;* by the
frequency zero spectral density estimators described in Newey and West (1987a) or Andrews (1991)

and applied to the time series {#, — 8,°},, . Let s; denote the estimated standard deviation of 8,
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obtained this way. Then, under standard assumptions, we have that 7% — 8) / sy converges to a

normal (0,1) random variable. Hence, using the delta method, we obtain

(5.6) T%8,/ 2s{(8; — 8) — prob— N(O,1).

6. Conclusions

In this article we have reviewed econometric tests of a wide range of asset pricing models,
where the models are based on the law of one price, the no-arbitrage principle, and models of market
equilibrium with investor optimization. Our review included the earliest of the equilibrium asset
pricing models, the CAPM, and also considered dynamic multiple-beta and arbitrage pricing models.
We provided some results for the asymptotic distribution of traditional two-pass estimators for asset
pricing models stated in the linear, return-beta formulation. We emphasized the econometric
evaluation of asset pricing models by using Hansen’s (1982) Generalized Method of Moments. Our
examples illustrate the simplicity and flexibility of the GMM approach. We showed that most asset
pricing models can be represented in a stochastic discount factor form, which makes the application
of the GMM straightforward. Finally, we discussed model diagnostics that provide additional insight
into the causes of the statistical rejections in GMM tests and which help assess the specification errors

in these models.
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Appendix

Proof of Theorem 2.1 The proof comes from Jagannathan and Wang (1995). We first introduce some
additional notation. Let I, be the N-dimensional identity matrix and 1, be a T-dimensional vector of

ones. It follows from equation (2.17) that
R-p=T'U,®1)e, k=1,.. K
where
€ = (€pp> € +ENtt> ++os Emar)

By the definition of b,, we have that

b=B,=1y® ((F R f)le

where f, is the vector-demeaned factor realizations, conformable to the vector €. In view of the
assumption that the conditional covariance of &, and €, given the time series of the factors (denoted

by /), is a fixed constant G, we have that

E[(b, - B, — ) In
=TIy ® (i) fDIEEE! |1y ® 1)
= TI[IN ® ((fk’f;z)_]ﬁc')] Zkl(IN ® 11)

=T 2, ® [(if) f1D1 =0

where we denote the matrix of the {0y}, by Zy. The last line follows from the fact that "1, = 0.
Hence we have shown that (b, — B,) is uncorrelated with (R — y). Therefore, the terms u and £y,

should be uncorrelated, and the asymptotic variance of 7%%(g — ¥) in equation (2.15) is given by

(%) x'[Var(u) + Var(hy,)Ix(x'x)™.



42

We assume that the sample covariance matrix of the factors exists and converges in probability to a

constant positive definite matrix Q, with typical element £2,,. We therefore have

TELb. - BI®: - B
= Ty ® (KA FOIEu ® Ty ® (FF )]
= 3, ® (TR TN T
54 (@70 Tyfas T-sw),
Thus
Var(hy) = 5y .. o Yot Qu” Q™) By
and
W = (%)% Var(rp)x(r'x)"
=X 0 T TR D)

QED.
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