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ABSTRACT

The general equilibrium formulations are developed for two important economic environments. The first
environment is the Lucas managerial span-of-control theory of the firm. It is shown that, in the spirit of
McKenzie, the aggregate production set can be characterized by a convex cone. The second environment
permits both the number of hours plants are operated and the number of workers operating them to be
varied. For empirically reasonable elagticities of substitution, equilibrium is characterized by employ-
ment-consumption lotteries.
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1. Introduction

In this paper we introduce the firm and the plant into classical general equilibrium theory.
Our approach follows McKenzie’s in having a convex cone aggregate technology. McKenzie (1959)
shows this formulation is equivalent to the one of Arrow and Debreu (1954), who assume a finite
set of technologies and an ownership distribution. The nature of McKenzie’s argument is that a
distinct entrepreneurial factor can be introduced for each firm. In the Arrow-Debreu setup, the
quantities of these factors are normalized to one and distributed proportionally to ownership shares.
Both the McKenzie and the Arrow-Debreu formulations are equivalent mathematically. They are
not, however, equivalent from the perspective of economics. The approach of identifying each firm
with a distinct technology set is not at all useful for developing a theory of industrial organizations.
As McKenzie (1959) points out, when nonconvexities are small relative to the size of the economy
and access to the underlying technologies is free, the aggregate production possibility set is
approximately a convex cone. In this paper, we adopt this approach and formally develop the theory
of the aggregate production possibility set for two economies.

In Section 2, we represent the Lucas (1978) managerial span-of-control theory of the firm
in the McKenzie-type general equilibrium language. With this representation the proof of existence
and optimality of equilibrium is a simple application of standard theorems in general equilibrium
theory. One element of this environment is a nonconvexity in the household consumption possibility
set: An agent can either be a manager or be managed by someone else but cannot be one-third
manager and two-thirds worker. This nonconvexity disappears with the introduction of lotteries:
An agent can be a manager with probability one-third and a worker with probability two-thirds. This
is the approach that Prescott and Townsend (1984) use to extend competitive theory to a class of
economies with private information. For the span-of-control economy, as well as for the Prescott-

Townsend private information economies, the production possibility set is a convex cone.



In Section 3, we consider an environment in which both the length of time a plant can be
operated and the number of workers operating it can be varied. This introduces what appears to be
a nonconvexity in the production possibility set because a plant’s output increases proportionally to
hours of operation, given the number of workers operating it and the capital stock used by the
workers. Until now, this feature has not been introduced into quantitative general equilibrium
analyses. Here, using the abstract language of general equilibrium theory, we develop a simple,
tractable way to introduce this feature. The important result is that in this world of identical
individuals, some people work and some do not, even though preferences are convex. This result
provides theoretical justification for the labor indivisibility constraint of Rogerson (1988) and Hansen
(1985). Again, the production possibility set is a convex cone.

In Section 4, we use a theorem of McKenzie (1959) to establish the existence of a competitive
equilibrium for the managerial span-of-control economy.

Throughout this paper, we use the McKenzie-type representation of an economy. A
commodity point x is an element of a linear commodity space L. There is a finite number of agent
types, i € 1, and a continuum of each type. The measure of type i is M, and the total measure of
agents in the economy is A = ;e\l The consumption set X' of a type i agent is a subset of the
commodity space L. Preferences over consumption bundles in X' are represented by the utility
functions u: X'-» R, Production is described by some aggregate production possibility set Y, which
is a convex cone in L. An allocation [(x);e;,y] is feasible if X € Xifor alli € I, y €Y, and
ZieNx' = y. Endowments are subsumed in X'. An economy is thus completely described by E =

{(ui,}(i’xi)iebY} . !



2. The Firm in General Equilibrium Theory

In a paper on the distribution of firm size, Lucas (1978) describes a static model of entry and
exit with competition in which firms arise endogenously.> His model is a general equilibrium
model, but his representation of the environment is such that its relationship to the standard general
equilibrium formulation is not apparent. We show that by defining the commodity points in terms
of contracts with lotteries, we can represent his environment as an economy whose production set
is a convex cone. This formulation makes transparent the role of entrepreneurial ability as a
production factor. It allows us to use standard existence results from general equilibrium theory, and
it provides an example for McKenzie’s interpretation of the aggregate production set.

We describe the environment of this economy as follows. There is a continuum of agents.
Each agent is characterized by managerial ability, m € M, and by endowment of the homogeneous
capital good, k € K. There is a finite number of agent types, i € 1. Each type is characterized
by tl;e pair (k,m). The measure of agent type i is Al and ZA! = 1. A homogeneous consumption
good is produced using managerial ability, labor, and capital. The technology is such that if one
agent of ability m € M manages n € N workers and k € K units of capital, then mg[f(k,n)] units
of the consumption good can be produced by this firm. The function f displays constant returns to
scale. Function g is increasing, differentiable, and strictly concave with g’(ee) = 0 and g'(0) = .
The vector a = (k,m,n) € A = K X M X N denotes a particular productive activity.

Preferences with respect to random consumption allocations with support C C R, are
represented by their expected utility E[U(c)]. The function U is increasing and has a strictly concave
extension on R,. An agent can act as either a manager or a worker, but not as both simultaneously.

Let the sets C, K, M, and N be finite subsets of R, and let q be the cardinality of S = C X

K X M U {0}). For this environment the commodity space L is R%, We restrict our attention to



finite sets for ease of exposition. This does not imply any loss of generality, and we will relax this
assumption when appropriate.

For an agent, the feasible consumption bundle is interpreted as a contract that specifies the
probabilities x, of the events s = (c,k,m) € S.° If the realization of the lottery is s, the agent
receives ¢ units of the consumption good and provides k units of capital services; if m = 0, provides

one unit of labor services; or if m # 0, provides one unit of managerial services of type m. Let

S={s€S8: k<k, m=0orm=mi}.

Given that the agent’s endowment of managerial ability and capital is assumed to be verifiable, the

consumption possibility set of a type i agent is

) Xi={xeL+: ;x,=1, x,=0ifs¢si}.

Note that an agent’s consumption possibility set is a lower-dimensional subspace of the commodity
space. This is a nonstandard feature that our economy has in common with McKenzie’s general
equilibrium approach. Preferences with respect to elements of this set are represented by the utility

function

@ u®=Y UQxe = ¥ UEx.

c,k,m

An allocation (x%);¢; is resource feasible if there exists a z € RY, where ¢ is the cardinality of A,

such that the following constraints are met:

® TNY - Y melfkn)z, < 0
@ -“YNYki+Ykg<0

5) -—ZN};xiko+znz,SO



©® Y NYxh,t+ Y % =<0, foreachm € M.
i k k,n

c,

We assume that a law of large numbers holds such that the realized distribution on outcomes
s for an agent type i coincides with that agent type’s probability measure x* (see, for example, Uhlig
1988). The vector z is a measure on the set of feasible activities 2 € A. The measure z specifies
the activities internal to the production set.

Constraint (3) says the total quantity of the consumption good distributed is less than or equal
to the total amount produced. Constraint (4) says the total quantity of capital provided by the agents
is at least as great as the quantity used in production. Constraints (5) and (6) state the same about
the production factors, labor (m = 0) and managerial abilities (m € M).

The system of linear constraints (3)-(6) can be expressed in the following compact form

0 r(zi: )\ixi,z) <0

where r is a linear function.

We now define the technology for this economy. The production set is
) Y ={y €L,: there exists z € R! for which 1(y,z) < 0}

where r represents a finite number of linear constraints. As defined, the production set is
McKenzie’s convex cone. This general equilibrium formulation seems to provide no information
about the industrial structure of the economy because the structure has been subsumed in the
production set Y. We can—and do—interpret a firm to be some combination of a manager, capital,
and workers, and in equilibrium there will be some distribution z over firms. The formation of firms
thus becomes part of the economy’s production possibility set, not something that exists indepen-

dently of it.



3. The Plant in General Equilibrium Theory

Rogerson (1988) and Hansen (1985) have done important work on modeling employment in
quantitative general equilibrium theory. They introduce a labor indivisibility constraint in the
environments considered. In those environments, in which all individuals are identical, equilibrium
is characterized by some people working and some not. We consider an environment in which the
same employment pattern is observed, although hours of employment is not constrained to two
values. In our environment both the time a plant can be operated and the number of workers
operating a plant can be varied. This introduces what appears to be a nonconvexity in the production
possibility set, since the output of a plant is hf(k,n), where h is hours the plant is operated, f is a
neoclassical production function with constant returns to scale, k is capital input, and n is the number
of workers operating a plant. For this technology, we no longer assume that production uses two
distinct inputs, managerial services and labor services, as in Section 2.

We now consider an economy of ex ante identical individuals, where the measure of agents
is one. Preferences with respect to random consumption work pairs (c,h) are represented by their
expected utility E[U(c,h)], where ¢ = 0 is consumption, 0 < h < 1 is the fraction of time allocated
to market activities, and 1 — h is the fraction of time allocated to nonmarket activities. Each agent
is endowed with k > O units of capital. The function U is increasing in ¢ and decreasing in h.

The problem is to represent this economy in our McKenzie-type general equilibrium
language. Let C, H, and K be finite sets, and let S be C X H X K with generic element s =
(c,h,k). The commodity space L is the Euclidean space with dimension equal to the cardinality of
the set S. For an agent, the consumption bundle is interpreted as a contract that obliges the agent
to provide k units of capital and h units of time, for which the agent receives c units of the
consumption good. The probability of an event s = (c,h,k) is x,. There is only one type of agent

with the consumption possibility set



©) X={x€ L,: Yx,=1,and x, =0ifk > E}
' sES

and the utility function

10) u® = Y, Ulc,xy = 3 Ulch)x,

c,hk [

Let N be a finite set, and let A = H X K X N with generic element a = (h,k,n) and
cardinality £. We let z, be the number of plants operated h hours using k units of capital and n

workers. An allocation is resource feasible if there exists some z € R{ such that

11 Y cx, — ¥ hitk,n)z, <0
(12) -V kx,+ Y kg, =0

13) -Y xu + Y nz,, <0, forallh € H
ck

k,n

Constraint (11) says the amount of the consumption good distributed is less than or equal to the
quantity produced. Constraint (12) says the quantity of the capital obtained is at least as great as the
quantity of capital used in the production. Finally, constraints (13) state that the number of people
working h hours are the numbers of people working in plants that are operated h hours.

Constraints (11)-(13) can be expressed in the compact form
rx,z) <0
and the technology set is

(14) Y = {y € L,: there exists z € R for which r(y,z) < 0}.



The constraints defining Y are jointly linear in y and z. It is immediate that Y is a convex cone.
The set X is convex, and the utility function u(x) is concave and continuous. Both sets are closed,
and the set X is compact.

In this economy with one agent type, the anonymous Pareto-optimal allocation is the one that
maximizes u(x) subject tox € X N Y. An optimum exists, given that u is continuous and X N Y
is compact. For economies with only one agent type, the anonymous competitive equilibrium and
the anonymous Pareto-optimal allocations coincide.

The characteristics of an anonymous Pareto-optimal allocation are derived by analyzing a
simpler equivalent problem. For this version, we no longer distinguish between the organization of
consumption (x) and the organization of production (z). The event s = (c,h,k) € S is now
interpreted as an agent receiving ¢ units of the consumption good, providing h units of time, and
working in a plant that uses k units of capital per worker. The Pareto-optimal allocation then solves

the following linear program:
(15) max Y U(c,h)x,
x20 4
subject to the constraints
16 Y x, =1
17 Y [c—fik,Dhlx, < O
(18 Yk, =k
Given that f displays constant returns to scale, the solution to this problem has the same measure of

agents consuming ¢ units and working h hours in plants with k units of capital per worker as does

the solution to the original problem.



For the rest of this section, we choose standard functional forms for the utility and production

function. The utility function is

[cY1-h)¢-Pja-2 — 1

Uch) = —

where v € (0,1) and ¢ = 0. The production function is Cobb-Douglas,
f(k,n) = k°n~

with @ € (0,1).

We now show that for the case in which the economy is parameterized in this way and S is
a rectangular subset of R2, there are two types of equilibria, depending on the parameter values.
For type 1, the equilibrium consumption vector places mass one on some point s; = (¢;,h;,k;) that
has h; > 0. Consequently, all agents work the same number of hours. For type 2, the equilibrium
consumption vector places mass on two points, s, and s,. For s,, the value of h, is zero. Thus,
some fraction of the agents work h; > 0 hours and receive consumption c,, while the remaining
agents do not work (that is, hy = 0) and receive consumption c,.

We start by describing the properties of solutions for the problem when S is finite. We solve
such finite-dimensional linear programs by using the simplex algorithm, which searches for optimal
basic solutions. A basic solution is a feasible x that puts mass on a number of points equal to the
number of constraints. Let B & S be the set of these points and a(s) = [1, ¢ — f(k,1)h,k]’ be the
column vector defined by s. A basic solution also requires that the set of the column vectors defined
by the basic solution, {a(s): s € B}, be linearly independent. A basic §olution is degenerate if the
number of points with strictly positive mass is less than the number of constraints.

When the constraint set is closed, bounded, and nonempty, a solution exists. The dual

constraints or first-order conditions with respect to x, of the finite-dimensional linear program are
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(19  U(e,h) — gy = pyle — fk,1)h] — pk <0, forals = (c,h,k) €S

where g, py, and u, are the Lagrange multipliers associated with the constraints (16)-(18). Equation
(19) must hold with equality if x, is strictly positive.

Numerical calculations deliver basic solutions for the finite-dimensional linear programs that
are nondegenerate; that is, three points receive strictly positive mass. We, however, observe
clusters: two or all three of the three points are close. If we choose progressively finer grids on S,
we observe that the points in a cluster converge. The basic solutions remain nondegenerate.

The convergence associated with the grid refinement is a convergence toward the solution
of the linear programming problem where S is no longer a finite set but a rectangular subset of R®.
For this case, the summation is replaced by integration over a positive measure x. The number of
constraints remains finite. Consequently, we are dealing with a semi-infinite linear program.

Basic solutions for linear programs of this type are similar to solutions of finite-dimensional
programs. An optimal measure x is atomic and assigns positive mass to no more points than there
are constraints. All points in S continue to satisfy equation (19), and if a point receives positive
mass, (19) holds with equality. This equality implies that any point 5, = (c;,h;,k;) that receives
positive mass must maximize the left side of (19) with respect to s. For an introduction to semi-
infinite linear programming, see Glashoff and Gustafson (1983).

We now show that there can be, at most, two points which receive positive mass; that is, the
solution to the infinite-dimensional program is degenerate. We first note that, conditional on k, the

left side of (19) is a strictly concave function in ¢ and h:
V(ehk) = pyftk,Dh + Ule,h) — e — pok.

The solution to the problem of maximizing V(c,h,k) by choice of ¢ and h is
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where k > 0 depends on g,, v, and o.
From the definition of the function V, it is immediate that (cy,hy,ky) = (€*(0),0,0) is a local

maximum of V, given g, and p,. Now let

W) = Vic*(k),h*(K).k].

The first and second derivatives of W with respect to k, for k > k, are

@ B = ke ®) - g

FwW

@) =

= amk‘“‘”{a [7 + -—“;7)] [l ~ h*@] - (1—a)h*(k)}.

Since h* is a monotone increasing function of k, the second derivative of W changes sign
only once: it starts out positive for k = k(h* = 0) and then becomes negative. Thus, the first
derivative of W, which is negative at k, first increases and then decreases. There are then, at most,
two values for which the first derivative is zero. If there are two, then only the larger is a local
maximum. We do know that a global maximum exists at some k; > 0, since any solution involves

some production of the consumption good. Therefore, at most, the function W has two local
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maxima, ko, = 0 and k;, > 0. To illustrate, we include a graph of the function W, shown in
Figure 1. The plot is for the parameter values @ = 0.3, ¥ = 0.3, ¢ = 0.8, and k = 2.0.

We now develop a sufficient condition that ensures the solution has positive mass on two
points. The nature of the argument is to show that under this condition, a solution which puts mass

on a single point leads to a contradiction.

PROPOSITION. If

24) a[y + .(_1_;_7_)] (1=y) — (l—a)y > 0

then the equilibrium places positive mass on two points.

Progf. Under the conjecture of all the mass being placed on a single point s; = (c,,h;, k), x,; = 1,
the value of k; must be k. After solving for t1, (23) implies that the second derivative of W is
positive at k = k, if and only if (24) is satisfied. The second derivative of W, being positive at k;,
contradicts k; maximizing W. But we have already shown that points receiving positive mass must

maximize W. This establishes the result. [

The result implies that for parameter values commonly used in real business cycle theory (for
example, Hansen 1985) or public finance (for example, Auerbach and Kotlikoff 1987), we will have
a type 2 solution, where not all agents will be working. Ify =< 2 — 1/e, then inequality (24) holds
for all 0. Ify > 2 — 1/, inequality (24) is satisfied for a sufficiently small ¢. The intuition for
the existence of type 2 solutions is that the gains in production, generated by splitting the population
into two groups, more than compensate for the corresponding loss in expected utility due to the
implied randomness in the agents’ consumption. A sufficiently small risk aversion ¢ ensures that

this loss is not too large.
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4. Existence of Competitive Equilibrium

The economies discussed so far share the following structure: On the consumption side,
there is a finite set S with cardinality q. There is a finite number of agent types i € I, and each
agent type i has preferences on S represented by U': S - R. There is a continuum of measure N
of each agent type i. The commodity space L is the space of signed measures defined on the Borel

o-algebra of S. The consumption set of a type i agent is defined as

X = {x €L, Yx, =1, gix < 0}
€S

where g is a finite-dimensional linear mapping defined on L. Preferences on consumption bundles

are represented by the linear functional u: X' - R of the form

v = Y U,

The production set is
Y = {y € L,: there exists z € R! for which r(x,z) < 0}

where T is also a finite-dimensional linear mapping defined on R1**,
For the economy E, a competitive equilibrium is a price system (linear functional) v. L - R

and a feasible allocation [(x*);¢;,y*] such that

(@) foralli, v(x*) < 0, and for all x € X with ui(x) > ui(x™), v(x) > 0

(i) y € Y implies v(y) < v(y*).

We consider competitive equilibrium allocations that are anonymous. For these allocations
an agent’s consumption bundle or contract depends only on that agent’s type. A more general
formulation would allow for the possibility that agents of the same type receive different contracts.

Below we first argue that theory imposes restrictions only on the realized distribution of consumption
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allocations. We then show that given any possible competitive equilibrium allocation, there will be
an anonymous competitive equilibrium with the same realized distribution of consumption allocations.
Thus the restriction to anonymous competitive equilibrium allocations is not binding with respect to
the realized distribution of consumption allocations, and it is this distribution that is to be explained.

When we confront our model economies with empirical observations, we treat lottery
contracts in the same way we treat the Walrasian auctioneer in competitive economic theory. There,
we do not expect to have observations of the auctioneer’s actions in clearing markets; rather, the
auctioneer is used as an “as-if” construct. The observed consumption allocations, however, are
interpreted as the equilibrium outcomes of an economy in which an auctioneer clears all markets.
Here, we treat contracts analogously. We do not expect to make observations on actual contracts,
but we do expect to make observations on realized distributions of consumption allocations for
different agent types. To evaluate the model, we are then limited to its implications for these
distributions. Our point is that, given this interpretation, the two formulations are observationally
equivalent.

Let each agent be indexed by a name e € E = [0,A], and let u be the Lebesgue measure.
(This approach follows Hildenbrand 1974.) Let h: E -» I be some Borel-measurable function that
assigns each agent to some type. The function h is such that for the set of agents of each type i,

expressed as
E' = {e € E: h(e) = i}

the measure of E' is AL
Let ¢(v,i) be the demand correspondence of a type i agent. Since agent e is of type h(e), the

demand correspondence of this agent is ¢(v,h(e)). Using this notation, we define a competitive
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equilibrium allocation as a price v*; an integrable function x*: E — I satisfying x* € ¢(v¥,h(e)),
for all e € E; and a profit-maximizing production plan y* € Y such that [px*(e)u(de) = y*.
Given a competitive equilibrium, we construct an anonymous competitive equilibrium with

the same realized distribution on consumption allocations for each agent type as follows. Let

%= [ x*(e)p(de)/N.
Ei

The measure X' defined above is a probability measure on consumption allocations. It is not the
measure for a particular agent e, but it is a probability measure conditional on the fact that we have
an agent e of type i holding an equilibrium contract x*(e).

Since the demand correspondence is convex valued, then %i which is a convex combination
of elements belonging to ¢(v*,i), also belongs to that set. That is, %! is optimal given v*. Point y*
is profit maximizing, given v*.

We still need to show that the anonymous allocation [(®h,y*] is market clearing. Given the
definition of X,

fi; Ngt = E j x*(e)u(de) = y*.

g

This establishes that the anonymous allocation [(X),y*] and the price system v* are an anonymous
competitive equilibrium.

What we have just defined is a mapping from the set of competitive eqﬁilibria into the set
of anonymous competitive equilibria. Given this mapping, we can group competitive equilibrium
allocations into equivalence classes indexed by their implied anonymous competitive equilibrium

allocation.
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Since we assume that a law of large numbers holds, the realized distribution on consumption
allocations for an agent type i coincides with the probability measure %. This holds for all
competitive allocations. Therefore, all competitive equilibrium allocations within an equivalence
class and their corresponding anonymous competitive equilibrium allocation do, in this sense, have
these same observational implications. The two equilibrium formulations are observationally
equivalent, if we have data on the realized outcomes and not the contracts themselves. Typically,
we deduce the nature of the equilibrium contract from the realized distributions of actual consumption
allocations.

To prove existence of a competitive equilibrium, we slightly modify McKenzie’s (1959,
1981) proof. The first modification is a matter of interpretation. McKenzie assumes a finite number
of agents, but we interpret his agent i as the agent zype i. For our problems we show that all of
McKenzie’s assumptions that guarantee existence of an equilibrium are satisfied, except for

Assumption 4. We also show that for our problems Assumption 4 can be dispensed with.
ASSUMPTION 1. X! is convex, closed, and bounded from below.

From the definition of the consumption possibility set, it follows that X' is a closed convex

subset of the unit simplex. Thus, X' not only satisfies Assumption 1 but is also compact.
ASSUMPTION 2. X' is completely ordered by a convex and closed preference relation.

In the span-of-control economy, preference relations are represented by linear functions on

X' and, therefore, are continuous and convex.
ASSUMPTION 3. Y € R{ is a closed convex cone.

The assumption follows from the definition of Y.
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AssuMmPTION 4. Y N R? = {0}.

This assumption states that null is the only joint element of the production set and the positive
orthant. For our economy, however, the production set is actually a subset of the positive orthant.
We can still use McKenzie’s proof since Assumption 4 is used only to prove compactness of the set
of feasible allocations. For our application, the compactness of this set follows trivially from our
additional assumption that the consumption possibility set for each agent type is compact, together
with Assumption 3.

The appropriate assumptions concerning the relation between the production and consumption
sides are also satisfied. Let X = X, and let I', I" be nonempty subsets of I such that I' N

I"=¢and I’ U I" = . Then define X* = L, NX and X¥ = I;cpNX.

ASSUMPTION 5. X* N Y # ¢ for all i. Moreover, there is a common point X in the relative

interiors of X and Y.

The commodity point x, which puts unit mass on the event s = (0,k',m’), is a joint element
of X' and Y. A point X that is in the relative interior of X and in the relative interior of Y can be
constructed as follows. For each agent type i, choose a point x' that puts equal mass on each set
Si,={s"=(k',m)ES: k' =k,m' =m}, wherek € Kandk < ¥ andm € {0,m’}. This
implies that certain quantities of labor, capital, and managers of each type are available for
production. Now distribute labor and capital equally among all available managers. This distribution
implies that a certain quantity of the consumption good will be produced. So far, only the marginal
distribution of x on S with respect to h and m has been determined. Within each set Si,, assign

equal mass to each point. There is then a unique value for that mass such that total production and
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total consumption of the consumption good are equal. We now have a point € € X N Y such that
%, > 0forall s € UgSt
LetH, = {x € R: x, = 0if s & U,,S"}. Point  is in the nonempty interior of Y relative

to H,. Let H, = {x € H;: Ix, = 1}. Point X is in the nonempty interior of X relative to H..

ASSUMPTION 6. However I' and 1” may be selected, if xX¥ € Y — X', thenthereisalsow € Y —

X" such that w = &' — x' and u®®) = u(x) foralli € I', and u®) > u(x) for some i € I'.

This assumption is satisfied if C contains an element c_,, that cannot be produced, given the
endowment of capital and labor. In this case, preferences satisfy local and global nonsatiation with
respect to feasible allocations.

Given that these five assumptions are satisfied, by Theorem 1 of McKenzie (1959), a
competitive equilibrium exists for the economy E.

We can relax the restriction that S is a finite set and allow it to be a compact subset of a
finite-dimensional Euclidean space. Then the commodity space L becomes the space of signed
measures on the Borel g-algebra of these sets, M(S). The subset of feasible allocations is compact
with respect to the weak* topology since these allocations are probability measures and therefore
uniformly bounded.

To show that a competitive equilibrium for such an economy exists, we study competitive
equilibria for a sequence of economies. We show that the competitive equilibrium allocations and
prices converge to an allocation and price system that is a competitive equilibrium for the economy
with commodity space M(S). The proof follows Mas-Colell (1975) and Prescott and Townsend
(1984), and proceeds in three steps. First, we construct a sequence of economies and show that their
competitive equilibrium allocations converge to a limit allocation that is feasible for the economy

with commodity space M(S). Second, we prove the existence of a continuous price function v and
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a cheaper point at prices v for each agent type in the limit economy. In the third and last step we
use the results from the second step to establish that the limit allocation is optimal at the limit price
system v.

We consider sequences of economies where, for the j economy, we restrict the commodity
space L, = M(S)) to a set of atomic signed measures that have mass only on a finite number of
points, S; € S. Let D be a countable, everywhere dense subset of S and let S; contain the first j
elements of D and the set {(C,,.,k’,m): i € I}. Then S;— S in closed convergence. Similarly, for
the production possibility set we restrict the space of activity measures to atomic signed measures
that have mass only on a finite number of points, A; € A, and A; — A in closed convergence.

For each of the economies E;, there exist a competitive equilibrium allocation and price
system, {(ij)ia,j'rj] and v;, as already shown. Since the sequence of equilibrium allocations is a
subset of a weak* compact set, the sequence has a convergent subsequence. And again, the limit
of this subsequence of competitive equilibrium allocations, [(®);e1,7], is a feasible allocation for the
economy with an unrestricted commodity space L. This completes the first step of the proof.

The second step of the argument is specific to our economy and concerns the existence of
a continuous price function v and the existence of a cheaper point at prices v for each agent type in

the limit economy.

Lemma 1. There exists a subsequence of equilibrium prices v; that converges uniformly to a

continuous function v on S.

Progf. We first show that we can define equilibrium prices v; as a linear function on S;. This
property is then used to prove the existence of a limit price function v that is continuous on S.
The equilibrium price function for the j economy is constructed from the firm’s optimality

conditions. These conditions are
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(25) Vg = g+ pyk + py < 0, foralls = (ck,m) € §;

(26)  pymglfk,n)] — pyk — pagy — pagh = 0, for alla = (k,m,n) € A

where p,, p,, and ps, are the Lagrange multipliers associated with constraints (3)-(6).

For each economy j there is a competitive equilibrium with a price system v; such that (25)
is binding for all s € §;. To see that such an equilibrium exists, take any competitive equilibrium
for the j* economy. If for this equilibrium (25) is not binding for some s’ € S;, then s’ is not
produced and its price is below the supply reservation price. In this case the price for s’ can be
raised until (25) is binding. The competitive equilibrium allocation continues to be optimal at the
higher price. The firm’s optimality conditions are satisfied, and since agents did not consume s’ at
the original price they will not consume s’ now at higher prices.

The sequence of competitive equilibria associated with the sequence of economies is chosen
from the class of equilibria with (25) binding. Equation (25) thereby defines the price system V; as
a linear function on S. Given this representation of the price system V;, there is a subsequence of
equilibrium prices that converges uniformly to a continuous function v on S, if there exists a
converging subsequence for the Lagrange multipliers -

We first show that py; > 0. Suppose ky; = 0. Then from the definition of prices, it follows

that v; < O forall s € S;. Now an agent of type i solves the following problem in the j® economy:

max Y, U(Ox,

xz0 tES§

subject to constraints

v.x, <0
E sj*s

ses!

Y x =1

sESji
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If v = 0 for all sin S}, then each agent will put mass only on points s with ¢ = ¢, as U is
monotone increasing in ¢. But c,,, cannot be produced for all agents of any type; thus, the
allocation cannot be feasible. Therefore, py; > 0.

Prices of a competitive equilibrium can be normalized arbitrarily. Since equations (25) and
(26) are jointly linear in prices v; and multipliers p;, multipliers can be normalized arbitrarily. The
Lagrange multipliers are nonnegative and we have shown that for the j® economy By > 0.
Therefore, it is possible to normalize g so that |;;| = 1. This, in turn, ensures the existence of 2
converging subsequence y; - . Given our definition of the price system in equation (25), the limit
price function v is continuous on S and the subsequence of price systems converges uniformly. This

completes the proof. [J

To show that the limit allocation is utility maximizing at the limit prices, we now prove the

existence of a cheaper point for each type.
Lemma 2. For each agent type i, there is a feasible choice x, € X such that v(x;) < 0.

Progf. We show that for the converging subsequence of Lagrange multipliers, p; — p (developed
in Lemma 1), the limit of p,; is strictly positive. This implies that ps, > 0 for all m € M, which
guarantees the existence of a cheaper point.

Suppose that g,; = 0. If, in addition, p, - O, then there is at least one m such that
Pam; = Mam and p3, > 0, since |g;| = 1. But then the measure X,,,, Which puts unit mass on the
point (c_,,,k',m), will be in the budget set for agents with the ability m' = m for some economy j.
The agents of this type will choose the measure, but the choice is not feasible. Therefore, p, > 0
if g, = 0. But if g, > 0, the same x_,, is again in the budget set for some agent type in some

economy j. Thus, p, must be strictly positive.
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It follows from (26) that p,,, > O for allm € M if p; > 0. To see this, rewrite (26) as

follows

@7 pam = pymg[fk,n)] — pk — pyn, foralla € A

The maximum of the right side of (27) is greater than or equal to zero. Since by assumption
g'(0) = o and since p; > 0, the maximum of the right side attains a value strictly greater than
zero. Therefore, p;,, > 0 for allm € M.

Each agent type is endowed with some managerial ability m € M. Therefore, the measure
X, that puts unit mass on the point s = (0,0,m) is feasible for that agent. But since g, > 0, the

value of this bundle is negative; that is, v(xy) < 0. This completes the proof of Lemma 2. [

For the third and final part of the argument we now use Lemmas 1 and 2 to establish that
the limit allocation is optimal at the limit price system. We first discuss the problems facing the
households. Since the analysis applies to all agent types, we simplify the notation by dropping the
agent type superscript.

Suppose that the consumption point X is not optimal at the price system v; that is, suppose
there exists an x such that x € X, u(x) > u(®), and v(x) < v(%) = 0. We distinguish two cases,
v(x) < v(X) and v(x) = v(X). We establish that the first case leads to a contradiction. We then
show that the second case implies that there is some x* € X such that u(x’) > u(X) and v(x) < v(X).
But the existence of such a point leads to a contradiction, as already established for the first case.

Suppose that the first case is true; that is, suppose v(x) < v(X). As S; = S in closed
convergence and S is compact, we can find a sequence of allocations {x;} such that x; € X; and
X; = x. (See Fact 6 of Mas-Colell 1975, p. 274.) But then V(X)) = v(x) and v;(X,) = v(X), since the

measures x are bounded and v; converges uniformly. In addition, u(x) > u(x) and u(x;) - u().
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This means that there is some economy E; for which vi(x) < vi(X) and u(x;) > u(Xp). This
contradicts X; being optimal at the price system v;.

Alternatively, suppose that the second case is true; that is, suppose v(x) = v(X). We have
already shown that there is a cheaper point for each agent type. Let x, € X with v(Xp) < 0be such
a point. Define points x* = (1—t)x + txo with t € [0,1]. Thenx* € X, v(x) < v(X) fort > 0
and u(x) > u(®) for t sufficiently small. But this means that x* satisfies the conditions of the first
case, and we have already established that this leads to a contradiction.

The argument proving that the limit allocation is optimal for the firm is similar. Suppose §
is not optimal for the firm; that is, suppose there exists some y € Y such that v(y) > v({§). We can
find a sequence {y;} such that y; € Y; and y; = y. But then v;(yy - v(y) and v(§; — v(§). This
implies that there is some economy E; such that v,(y;) > v;§;), which contradicts §; being optimal

at the price system v;.
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Footnotes

IThe fact that we restrict allocations to ones that treat agents of the same type in the same

way is discussed in Section 3.

%In his study of executive compensation, Tuck (1954) deals with managerial span-of-control
in an informal but general equilibrium way. We thank Lionel McKenzie for bringing this work to
our aftention.

?Although it is possible to define a lower-dimensional commodity space for this example, it
is not desirable. By considering the more general space, results such as the convexity of Y are

transparent.
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