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ABSTRACT

A bivariate Granger-causality test on money and output finds statistically
significant causality when data are measured in log levels, but not when they
are measured in first differences of the logs. Bootstrap simulation experi-
ments indicate that, most probably, the first difference results reflect lack
of power, whereas the level results reflect Granger-causality that is actually
in the data. The reason for the lack of power in the first difference
F-statistic is that first differencing the data appears to entail a specifica-
tion error. By showing that money does Granger-cause output in the bivariate
relation, we remove a potential embarrassment for models that assign an impor-
tant role to money in business fluectuations.
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1. An empirical puzzle

When we tested the null hypothesis that money fails to Granger-cause
output in a bivariate money-output relation using data in log levels, the
resulting F-statistic was 3.19 with significance level 0.0027. When instead
we used first differences of the logged data, the resulting F-statistic was
1.38, with significance level 0.22.' Which of these two results is the most
plausible--the first difference result, which suggests that money fails to
Granger-cause output, or the level result, which suggests that money strongly
Granger-causes output?

This empirical puzzle attracted our attention because of an argument
in Eichenbaum and Singleton (1986). They conjecture that it would be diffi-
cult to construct a business cycle model which (a) assigns an important role
to monetary factors, (b) is empirically plausible and (c¢) has the implication
that money fails to Granger-cause output in the bivariate money-output rela-
tion.2 If the Eichenbaum-Singleton conjecture is right, then a finding that
there is no Granger-causality from money to output in the bivariate money-
output relation would have major implications for monetary business cyecle
models.3 For this reason, we thought it vital to resolve the empirical puzzle
mentioned in the first paragraph.

Based on bootstrap simulation experiments, we find that the most
likely explanation of the puzzle is that the small F-statistic based on the
difference data reflects not the data's lack of Granger-causality from money
to output, but rather the test's lack of power to detect it. The large F-
statistic on the level data appears to reflect the greater power of this test
to detect the Granger-causality that is in fact there. The reason for the
lack of power of the first difference F-statistic is that, for our data set,

log first differencing both time series prior to doing the Granger-causality



test appears to give rise to specification error. Thus, we conclude that the
bivariate Granger-causality pattern between money and output does not consti-
tute an embarrassment to monetary business cycle models.

Our results would not be economically interesting if the Granger-
causality from money to output was statistically signifieant, but numerically
very small. Therefore, we also calculated the percent variance in the log of
output that is due to a shock in money. Based on such a decomposition, we
found that the Granger-causality from money to output is quantitatively sub-

stantial.

2. Possible explanations of the empirical puzzle

We use monthly observations on M1 and industrial production as our
measures of money and output, respectively. The maintained hypothesis
throughout this paper is that the joint log M1 (LM1) and log industrial pro-
duction (LIP) process can be approximated by a seven-lag, bivariate vector
autoregression (VAR) with a constant term. We examined the ability of four
alternative sets of restrictions on this VAR to explain the empirical puzzle

that motivates this paper: the high empirical level F-statistic and the low

empirical difference F-statistic. We denote these sets of restrictions by
Hg, HE, Hg, Hk. Here,
Hg = Hypothesis that the level VAR can be represented as a six-lag

bivariate VAR in first differences of LM1 and LIP, which satis-
fies the null hypothesis (Hy) that LM1 fails to Granger-cause

LIP, i.e., fails to enter the LIP equation.

H, = Same as Hg, except that the alternative hypothesis (Hp) is right

and LM1 enters the LIP equation.



H and HY = Analogous to HJ and Hy, except that the VAR in levels of
LM1 and LIP is presumed not to be representable as a VAR

in first differences of LM1 and LIP.

Two of these hypotheses, Hg and Hk, are of particular interest to

us. Hypothesis HD seemed plausible on a priori grounds for two reasons.

0
First, if Hg is true, then the small empiriecal difference F-statistic is to be
expected., Second, if Hg is true, then the level VAR representation of LM1 and
LIP has two unit roots and LM!1 and LIP are not cointegrated. Results in Sims,
Stock and Watson (1986) indicate that, in this case, the sampling distribution
of the level F-statistic is nonstandard., Although their results do not pre-
diect that application of standard asymptotic sampling theory necessarily leads
to too many rejections (i.e., a high level F-statistic), this is a possibil-
ity.

Hypothesis HL also appealed to us. First, in this case the high

A
level F-statistic is to be expected. Second, under Hk the difference model is
misspecified, and we thought it possible that this might lead to a small

difference F-statistic. As we show below, our results indicate that Hk is the

most likely explanation for the empirical puzzle.

3. Bootstrap simulation methodology

This section describes our methodology for investigating the empiri-
cal validity of the four hypotheses defined in section 2. We do so by examin-
ing the distribution of the level and difference F-statistics implied by each
hypothesis. 1In addition, our analysis requires deriving the sampling distri-

bution of the 1likelihood ratio statistic for testing the null hypothesis Hg

against the alternative Hk. The distributions of these statistics were com-

puted based on bootstrap simulations of four models, or data generating mecha-



nisms (DGMs). We denote the DGM corresponding to Hg by DGMg, for i = 0, A and

j =D, L., We now describe the DGMs formally:

DGMD = Bivariate, six-lag VAR in first differences of LM1 and LIP

h =
estimated using the U448 monthly observations from September
1948 to December 1985 as the estimation period and the March-
August 1948 data as initial conditions. Each of the two
equations in the VAR was estimated by ordinary least squares
(OLS), and LM1 was restricted not to enter the LIP equation.

DGMK = Same as DGMg, except LM1 is permitted to enter the LIP equa-
tion with nonzero coefficients.

DGMg = Bivariate, seven-lag VAR in levels of LM1 and LIP, estimated

by OLS using the U448 monthly observations from September 1948
to December 1985 with data for February-August 1948 as initial
conditions. The LIP equation was restricted not to include

LM1.

L L
DGMA = Same as DGMo

tion with nonzero coefficients.

, except LM1 was permitted to enter the LIP equa-

Each DGM was used to generate 5,000 samples of 448 artificial obser-
vations on LM1 and LIP. Each DGM requires seven initial observations on LMI
and LIP to generate a sample. In all cases, we used the actual February-
August 1948 data for this. In addition, two sets of 448 disturbances--one for
each of the LIP and LM1 equations--are required. We call our simulations
bootstrap simulations because these disturbances were obtained by randomly
sampling from the fitted residuals computed during estimation of the given

i
DGM. For each DGM, we computed 5,000 difference and level Fs as follows.



Let HO denote the null hypothesis that LM1 fails to Granger-cause LIP, i.e.,
does not enter the LIP equation. On each of the 5,000 data sets, the level F

and the difference F are the F-statistics for testing Hy based on levels and

differences of the data, respectively. These calculations were done in the
same way as those underlying the empirical F-statistics reported in the intro-
duction. In addition, the 5,000 data samples generated by DGMK were used to

compute 5,000 values of the likelihood ratio statistic for testing HE against

L
X

H

As far as we know, the literature does not contain a formal justifi-
cation for our bootstrap simulation methodology. We conjecture that there is
an asymptotic Jjustification. Our intuition is that with a large number of
observations, consistency of the parameter estimates guarantees they are close
to their true values, Jjustifying centering the simulations on the estimated
parameter values. For the same reason, we expect that in large samples the
fitted disturbances resemble the true underlying disturbances, Justifying
sampling from the fitted disturbances.

We did two robustness checks on all our results in this paper. We
redid all the calculations by drawing the disturbances from the normal distri-
bution and found the results virtually unchanged. In addition, we redid our
entire analysis using data for the period from January 1959 to December 1985

and obtained results very similar to those reported here. For details, see

Christiano and Ljungqvist (1987).

4, The Granger-causality from money to output is statistically significant

We reached our conclusion that the Granger-causality from money to
output is statistically significant based on the marginal distribution of the
simulated difference and level Fs, which are graphed in figs. 1-4. The fig-

ures allow us to reject Hg and HB at the 3% significance level.



Consider fig. 1, which is produced under HD In addition to report-

o
ing the frequency distribution of the simulated difference and level Fs, it
also plots the F-distribution with 6 numerator and U435 denominator degrees of
freedom. Conventional asymptotic sampling theory says this is the density
function from which the empirical difference F-statistic is drawn under Hg,
which is valid by construction in the simulations.

Note first in fig. 1 that the distribution of the simulated first
difference F-statisties closely coineides with that of the theoretical Fs.
This indicates that with BU48 observations asymptotic theory is a pretty good
approximation--an encouraging result in view of our belief that the justifica-
tion for our methodology is asymptotic. Note also the fact that the simulated
level Fs are only slightly shifted to the right of the simulated difference
Fs. This means that, while a level F-statistic does tend to reject the null
hypothesis too often if the difference model is right and money in fact does
not Granger-cause output, the tendency is quantitatively too small to account
for the high empirical F-value of 3.19 obtained using level data. In our
5,000 simulations, only 2.6% of the simulated level Fs exceed 3.19.

Fig. 2 shows that the empirical F-statistics--3.19 from levels and
1.38 from differences--are quite plausible under the Hk. The small magnitude
of the empirical F-statistic based on differences is not surprising under the
hypothesis that the data are generated by the level model. In our 5,000
simulations, for example, 16.5% of the difference F-statistics are even
smaller than the empirical difference F of 1.38. The empirical level F of
3.19 is obviously also plausible relative to the simulated level F-statisties.

Fig. 3 allows us to assess the plausibility of Hg. This is a natu-
ral hypothesis to investigate given the results in fig. 2. One would like to

know whether the large level F-statistics in that figure reflect the test's



power or simply its tendency to reject too often, regardless of the status of
the null hypothesis. Fig. 3 shows that the results in fig. 2 do reflect the
power of the level F-statistic. In addition to reporting the frequency dis-

tribution of level and difference Fs under HL fig. 3 also reports the density

0’
function of the F-distribution with 7 numerator and 433 denominator degrees of
freedom. Note that the three distributions in fig. 3 nearly coincide. We
conclude that Hg can be rejected on the basis of the large empirical level
F-statistie.

Finally, we turn to Hz. The frequency distribution of the level and
difference Fs under this null hypothesis appear in fig. 4. The interesting
thing to note is that both empirical F-statistics are individually plausible
under Hg. For example, 18% of the difference Fs are smaller than the empiri-
cal difference F-value of 1.38. Also, 35.2% of the level Fs exceed the empir-
ical F-value of 3.19,

Based on the analysis of the marginal distributions of the F-statis-~

L

ties, we conclude that Hg and HO are not plausible, as asserted in the title

of this section.

5. The empirical puzzle reflects that the difference model is misspecified

By focusing on the marginal distribution of the level and difference
F-statisties, the preceding section was able to establish that the null hy-
pothesis--LM] fails to Granger-cause LIP--is implausible. However, our analy-
sis did not allow us to conclude which model specification is the better
one: the unrestricted first difference specification (HE) or the unrestricted
level specification (Hﬁ). In the first part of this section we show that when
the joint distribution of the Fs is considered, then of all the explanations
cited in section 2, Hk is the most plausible. Based on a one-tailed and a

two-tailed hypothesis test, we find that the others are rejected at the 5%



significance level. The second part of this section reports the results of a
more conventional test of the first difference specification versus the level
specification. There we show that the likelihood ratio test rejects the first
difference specification at any positive significance level, thus corroborat-

ing the results in the first part of this section.

5.1. Tests based on the joint distribution of the level and difference

F-statistics

To make our discussion of the hypothesis tests performed below
precise, we first require some notation. Let Fg(r) be a 2 x 1 vector with its
first element containing a level F-statistic and its second element a differ-
ence F-statistic, generated at the rtP simulation by data generating mechanism
DGMg, i=0, 4 j=D,L;r=1, ..., 5,000. For example, Fg(10) denotes the
vector of F-statisties generated on the 100 simulation by the first differ-

ence VAR in which LM1 enters the LIP equation. Then write

J_ _1_ 15,000
FY = 57000 Lot Fi(r)

1 5,000 1
R DR CIOREHIHOREH

where 1 =0, A and j = D, L, Thus, Fg is the 2 x 1 vector of means of the
level and difference Fs from 5,000 simulations from model DGMg, and Vg is the
corresponding variance covariance matrix., These are reported in table 1. The
second moment matrices in table 1 contain a correlation on the lower diagonal,

a covariance on the upper diagonal and variances along the diagonal.

5.1.1. A one-tailed test

Note from table 1 that, in each case, the level and difference Fs
are positively correlated. Interestingly, the highest positive correlation,

0.90, occurs when the data generating mechanism is DGMK. Recall fig. U's



implication that under Hg the low empirical difference F and the high empiri-

cal level F are individually plausible and that the marginal distributions of

the two Fs roughly coincide. Under these circumstances, the high positive
correlation between the two suggests that the magnitude of the spread between
the two empirical F-statistics is unlikely. This is confirmed by the results
in table 2, which reports the frequency of the event {Fg(r): level F > 3.19,
difference F < 1.38} for j =D, L and 1 = 0, A. The table shows that among
the {Fg(r), r=1, ..., 5,000} generated by DGMR, only four were characterized
by a difference F lower than the empirical one and a level F larger than the
empirical one. Thus, relative to Hg, the empirical Fs lie far out in a tail,
so that this test rejects HZ at the 0.1% significance level.

Table 2 also indicates that the empirical spread between the empiri-
cal F-statisties is very implausible relative to Hg and Hg. The hypothesis
that comes out looking best by this test is Hk, which fails to be rejected at
the 5% significance level. The plausibility of Hk is not overwhelming, how-

ever, since it is rejected at the 6% significance level by this test.

5.1.2. A two-tailed test

Further information about the distribution of the Fg(r)s is reported
in figs. 5-8. These depict the scatter diagram of the level and difference Fs
generated by each DGM. The empirical Fs are also reported in each graph. In
addition, the two ellipses in the figures are confidence ellipsoids.5 The
smaller ellipse contains 90% of the realized Fg(r)s, and the larger one con-
tains 95%. They are two-dimensional generalizations of the one-dimensional,
two-sided confidence interval, symmetric about the mean. They provide an
indication of the dispersion of the simulated F-statistics and form a basis

for a second test of our hypotheses.
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The confidence ellipsoids in the figures can be used to perform a
two-tailed test. Doing so, we find that all our explanations for the empiri-
cal F-statistics are rejected at the 5% significance level, except Hk. Under
Hg, HE, Hg, Hk the empirical F-statistics lie on the boundary of the 96.1,
95.2, 98.6 and 39.7% confidence ellipsoids, respectively. (These ellipsoids

are not depicted in the figures.) Clearly, this test is particularly favor-

L
able to HA‘

5.2. A likelihood ratio test

A more conventional way to compare Hg and Hk is to carry out a
likelihood ratio test of the null hypothesis that the first difference VAR is
true versus the alternative that the level VAR is true. Specifically, the
empirical value of our test statistic is A = T log [det(VD)/de’c(VL)], where
T = 448 is the number of observations, Vp is the estimated innovation covari-
ance matrix of the DGME model and VL is the corresponding quantity for DGM&.
The value of A is 39.24. 1If the model were covariance stationary under the
null hypothesis, then--under the null hypothesis--A would be a realization
from a chi-square distribution with four degrees of freedom [see, e.g., Sims
(1980a, p. 17)]. The number of degrees of freedom reflects the fact that
there are four extra free parameters under the alternative hypothesis of the
test. The significance level of 39.24 under a chi-square distribution with
four degrees of freedom is approximately zero, so that application of conven-
tional asymptotiec sampling theory results in overwhelming rejection of the
null hypothesis, However, this conclusion is premature, since the conven-
tional asymptotic theory requires covariance stationarity under the null
hypothesis--an assumption not satisfied in our case. As a result, we computed

the significance level of our test statistic by bootstrap simulation. Specif-

ically, we computed 5,000 artificial values of A, one for each of the 5,000
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data sets generated from DGMR, as described in section 3. We found that not

one of the 5,000 simulated As exceeds 39.24, allowing us to reject Hg in favor

of Hk at the zero significance level. Although we found that application of
the conventional chi-square sampling theory would lead one to reject the null
hypothesis too often if the data generating mechanism is DGME, the effect of
this bias was obviously not quantitatively large enough to prevent overwhelm-
ing rejection of the null hypothesis.

We were initially surprised by this strong rejection, since informal
evidence suggested to us that the two models are in fact similar. For exam-
ple, the determinant of the autoregressive part of DGME has two roots, each of
which appeared to us to be close to unity--1.003 and 0.991~-raising the possi-
bility that DGME is almost a first difference model.® 1In the appendix we show
that the reason for the strong rejection of the difference model is the 1.003

root in the level model and the fact that, in the likelihood ratio sense,

1.003 is very far from unity and 0.991 is very close to it.

6. Power comparisons between the level and difference F-statistics

Informal comparison of figs. 2 and 3 suggests that the level F has
greater power when the level specification is correct. At first glance,
fig. 4 might be interpreted as saying that the level F-statistic also has
greater power when the first difference specification is correct. However,
recall that power is defined as the probability of rejecting a false null
hypothesis given a fixed probability of rejecting the null hypothesis when it
is true (i.e., committing a Type I error). Fig. 1 shows that the level F has
a tendency to reject the null hypothesis more often than the first difference
F when the null hypothesis is true and the data are generated by the differ-
ence model. The fact that the horizontal distance between the level and first

difference F is greater in fig. 1 than in fig. U suggests that the power of
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the first difference F-statistic may exceed that of the level F when the first
difference model is true. These observations are confirmed by the results in
table 3.

Table 3 shows that the power of the level F-statistic substantially

exceeds that of the difference F-statistic when the null hypothesis (HO) is

characterized by DGMé and the alternative hypothesis 1is characterized by
DGMK. For example, given a Type I error probability of 5%, the level F cor-

rectly rejects Hy 93.66% of the time, whereas the difference F rejects only
51.98% of the time. When the difference specification is correct, then the
difference F-statistic is the more powerful one. This is perhaps not surpris-
ing since the VAR parameter estimators that underlie the difference F-statis-
tic are more efficient, in this case, than the estimators underlying the level

F-statistic.

7. The Granger-causality from money to output is quantitatively substantial

Finally, we investigated whether the Granger-causality from LM1 to
LIP is strong enough to deserve attention. We calculated the percent of the
conditional variance in LIP that is due to a shock in LM1 at various hori-
zZons. These calculations require normalizing the disturbance vector. We
chose to do so by restrieting money disturbances not to affect LIP in the
current month. We expect that this choice of normalization does not affect
the results because the correlation between the innovations to LM1 and LIP is
close to zero.  We did the calculations based on the unrestricted level
model (DGMk) and the unrestricted difference model (DGMK).

Our results based on using the level VAR are reported in table },
It indicates that, in the bivariate relation, innovations to the log of money
play a numerically important role in explaining variations in the log of

output. In a 70% confidence interval, their importance exceeds 14% at the
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two-, three-, and four-year horizons, and the corresponding mean estimate is
between 25 and 30%.

We also investigated the implications of the unrestricted first
difference VAR model for the decomposition of variance in the log first dif-
ference of output. According to that model, at the 12-month horizon, 4.88%
(2.17-7.64%) of the variance in output growth is due to innovations in money;
at the 2l-month horizon, 5.15% (2.27-8.06%). (Numbers in parentheses are the
70% confidence interval.) The variance decomposition (and 70% confidence
interval) converges by the 240 month.  These calculations were done in the
same way--with obvious modifications--as those for table 4.8 However, the
results are not directly comparable since they pertain to the variance decom-
position of the first difference of the log of output, whereas those in table
4 pertain to the log of output.

Table 5 reports the variance decomposition for the log level of
output implied by the estimated unrestricted first difference VAR.® The mean
estimates in that table also support our contention that the Granger-causality
from money to output is quantitatively large. However, the confidence inter-
vals are shifted closer to zero relative to those in table 4., This presum-
ably, is another manifestation of the first difference model's tendency to
regard the Granger-causality from money to output as statistically insignifi-
cant. Recall from section 5 that this implication of the difference model is
implausible given the magnitude of the spread between the empirical difference
and level F-statisties. 1In addition, we showed in that section that the first
difference representation is strongly rejected in favor of the level represen-

tation.
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8. Summary and conclusion

When a regression test of the null hypothesis (H,) that money fails
to Granger-cause output is carried out using first differences of the data,
the resulting test statistic is small, apparently indicating no evidence
against Hy. When the test is carried out using levels of the data, the test
statistie is large, apparently indieating rejection of Hg. Bootstrap simu-
lations showed that a VAR fit to first differences of the data could not
account for the simultaneously large levels test statistic and small first
difference test statistic. This was true whether or not the estimated VAR in
differences was restricted to exclude money from the output equation. We also
showed that a VAR based on levels of the data--restricted so that money does
not enter the output equation--could not account for the empirical test sta-
tisties. One model which could account for these results is the VAR estimated
using levels of the data without imposing any restrictions, We showed that
this latter model implies that the Granger-causality from money to output is
quantitatively 1large. Based on these results and the faect that the first
difference model is strongly rejected by a likelihood ratio test, we coneclude
that Granger-causality from money to output is statistically and quantita-
tively significant. First differencing prior to executing the Granger-causal-
ity test appears to have resulted in a substantial loss of power of that
test. This reduction in power due to first differencing reflects that, for
this data set, first differencing both series seems to involve a specification
error.

As with any empirical study, one has to bear in mind that our re-
sults are based on a particular maintained hypothesis. The maintained hypoth-
esis is that the (log) levels of output and money have a seven-lag VAR repre-

sentation. The work of Eichenbaum and Singleton (1986) and Stock and Watson
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(1987) suggests that a possible source of misspecification of our model lies
with our exclusion of a time trend. This possibility is worth further inves-
tigation. However, in the meantime, two points are worth stressing. First,
Stock and Watson (1987) show that our basic result--that the Granger-causality
from money to output is significant--is in any case robust to possible mis-
specification along this dimension. Second, the work of Quenouille (1947) and
Chow and Levitan (1969) suggests that, due to the explosive root in our DGMk
model, it looks in some respects like a model with a time trend anyway.10

We hope not only that this paper sheds light on the nature of money-
output dynamics, but that it is of more general methodological interest.
First, we think it illustrates the power and versatility of bootstrap simula-
tions for conducting inference in contexts where the required sampling theory
either is intractable or requires extensive specialized knowledge of econo-
metries. In particular, we have applied it in cases where there are unit
roots and explosive roots and where the underlying model is misspecified. The
latter plays a central role in the context of non-nested tests and encompass-
ing tests [see, e.g., Mizon and Richard (1986) and the references they
cite]. Second, the analysis of data with VARs has at times been criticized
for its apparent lack of robustness to whimsical assumptions, such as whether
or not the data have been first differenced. By presenting one example in
which such an apparent lack of robustness is decisively resolved, this paper

makes us hopeful that our methodology can do the same in other such cases.
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Notes

'The level F-statistic is based on a regression of the log of indus-
trial production (LIP) on a constant, seven lags of that log and seven lags of
the log of M1 (LM1). Similarly, the difference F-statistic is based on a
regression of the first difference of LIP on a constant and six lags of first
differences of LIP and LM1. The estimation period is from September 1948 to
December 1985, and the initial conditions are the February-August 1948 obser-
vations. The significance level of the test is the area under the F-distribu-
tion to the right of the computed test statistic.

2It is straightforward to produce monetary models which satisfy only
(a) and (c¢) and not (b). Mankiw (1986) has two such examples. His first
example implies that the regression of output on money has an RZ of unity.
His second example assumes that the money stock is a white-noise process.
Both of these specifications appear to be empirically unreasonable. [For an
extended discussion and further examples, see Eichenbaum and Singleton (1986,

sect. 4b).]

3It is important to emphasize that our results pertain to the bi-
variate relationship between money and output. For example, it is well known
that when a financial rate of return is included in the VAR, then money fails
to Granger-cause output, even in a level specification [Sims (1980b)]. Sims
(1980b, sect. III) shows that there are ways to reconcile this-finding with
the view that monetary policy plays an important role in business fluctua-
tions. However, these potential explanations presume that money Granger-
causes output in the bivariate system. It is this assumption that is at issue
in this paper.

“This was done as follows. Let ;t’ t =1, ..., 448, be the set of

2 x 1 vectors of fitted disturbances from the estimated VAR model. One draw,
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{E1’E2""’2448}’ was executed by first randomly selecting 448 integers, iy,
ins; +..y iyng, with replacement, from {1,2,...,448}. Then Et = eit, t = 1,
ve., 448,

5The confidence ellipsoids were computed as follows. Let sg[x] be a

funetion mapping Ri into Rl defined as followus:
J = (B (yIY T womdy
si(x] = (x Fi)(Vi) (x Fi)

for 1 = 0, A4; j =D, L. Also, let cg(a) be an a% critical value, defined by
the property sg[Fg(r)] > cg(a) for no more than (a/100) x 5,000 values of r €
{1, ..., 5,000}. Then the a% confidence ellipsoid is defined as the set of

points x such that
J - aJd
si(x) = ci(u)

for j =D, L; i = 0, A.

®The roots of the determinant of the autoregressive part of the
DGMk model are -0.475 + 0.593i, -0.504, -0.475, -0.128 : 0.575i, 0.411 +
0.586i, 0.991, 1.003, 0.695 + 0.156i and 0.284 : 0.187i. The corresponding
roots of the DGMR model are -0.472 :+ 0.621i, -0.438, -0.576, -0.127 + 0.555i,
0.394 + 0.639i, 0.864, 1.0, 1.0, 0.558 + 0.153i and 0.119. These roots are
defined as follows. Let A(L)yt = e, be a bivariate, pth order VAR, where e
is white noise and uncorrelated with Yegg» 8 > 05 A(L) =1 - A4L - A2L2 - ..
- Apr and L is the lag operator. Denote the ijth polynomial element of A(L)

by aij(L) for i, j =1, 2. Then the roots are the reciprocals of z values

such that det[A(z)] = a;q(z)ay,(2z) - a;5(z)ay(z) = O.
7The correlation between the residuals in the LIP and LM1 equation
is 0.065 for the model specified in levels (DGMk) and 0.025 for the model

specified in first differences (DGMg).
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8The difference in the way the calculations were done is the fol-
lowing: The data generating mechanism underlying the results in table U is
the estimated unrestricted VAR in levels (DGMk), whereas the data generating
mechanism underlying the calculations just described is the estimated VAR in
first differences (DGME).

The calculations underlying table 5 were done in a similar manner
as those underlying table 4. In particular, 5,000 artificial data sets were
generated by the DGME model in the manner described in section 3. On each
data set an unrestricted, six-lag, bivariate VAR in first differences was
estimated. Variance decompositions of the log of output were then computed
based on the parameter values of the implied levels VAR model. An alternative
strategy for computing the distribution of the variance decompositions would
have exploited the asymptotic normality of the parameter estimators of the
first difference VAR, as in Christiano (1986). We chose to use our more
computer-intensive approach to preserve symmetry with the calculations under-
lying table 4. In the latter case, we were not happy with using standard
asymptotic normality results because the level VAR specification appears not
to be covariance stationary.

'°Stock and Watson (1987) note that the Ffirst difference of LIP
appears not to exhibit a trend, whereas the first difference of LM1 does.
They measure the importance of the trend in a variable by the magnitude of the
t-statistic on the coefficient on time in the regression of the growth of the
variable on six lags of its growth rate, a constant and time. These t-statis-
tiecs for LIP and LM1 based on our data sets are -0.496 and 4.89, respec-
tively. We computed these same t-statistics in each of the 5,000 artificial
data sets generated by DGMk and found the average t for LIP and LM1 to be

-0.413 (55.28%) and 4.97 (54.74%), respectively. (Numbers in parentheses are
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the percent of simulated t-statisties that exceeded the corresponding empiri-
cal value.) Thus, consistent with the analyses of Quenouille (1947) and Chow
and Levitan (1969) and the simple example in Sargent (1979, p. 293), our model
seems capable of capturing the trend behavior of the LM1 and LIP data as

measured by Stock and Watson (1987).
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Appendix:

Sensitivity of the likelihood ratio statistic to an explosive root

In seetion 5.2 we showed that the null hypothesis that DGMK is the
data generating mechanism is rejected at any positive significance level
against DGMk. We also noted that the two maximal roots of the determinant of
the autoregressive part of DGMk are 0.991 and 1.003 (see footnote 6). The
rejection of the DGME

unity in the sense that if they had been unity instead, then the DGMk would be

model is due to the discrepancy between these roots and

a first difference model. This appendix also shows that, of these two roots,
it is the explosive one (1.003) which principally accounts for the overwhelm-
ing nature of the rejection reported in section 5.2. In particular, if the
1.003 root had been 1.000 instead, then most likely we would not have rejected
the first difference model. This implies that the next smaller root in DGMk,
0.991, plays very little, if any, role in accounting for the rejection of the
first difference model. Thus an explosive root and its reciprocal have very
different impacts on inference. We give precise measures of this asymmetry
using power calculations.

Write the DGMk as follows:

(a.1) ALYy, = e,

Hi

where the constant 1is suppressed for notational simplicity and Vi

(LIPt,LM1t)' and e, ..., eyyg are the fitted disturbances. Also, A(L)
I- AL - A2L2 - e = A7L7 are the estimated VAR parameters and L is the
backshift operator; i.e., Liyt = ¥i_y for any integer i. As we noted in the
previous paragraph, the maximal root of det[A(z‘1)] is 1.003 and the next

smaller one is 0.991.
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To establish that the rejection of the first difference specifica-
tion results from the explosive root in A(L), we show that A = 39.24 is very
plausible under DGME, but very implausible relative to a perturbation of DGME
in which the 1.003 root of A(L) is replaced by 1.000. The other maximal root,
0.991, plays at best a small role accounting for the high likelihood ratio
statistic, since replacing it by 1.000 in A(L) has little effect on the plau-
sibility of A = 39.24, To make these observations precise, we need to explain
what we mean by "replacing" roots in A(L) and what we mean by the "plausibil-
ity" of A = 39.24 relative to a given model.

To explain how we "replaced" one or both of the maximal roots of
A(L), we first require some notation. Let ﬁi, i=1, ..., 14, denote the
zeroes of det[A(z"1)] with the convention ﬁ1 = 0.991 and ﬁe = 1.003. Simi-
larly, let x! denote the eigenvector of A(ﬁi'1), i=1, ..., 14, and let X be
the 2 x 2 matrix [x1x2]. In our case, X is nonsingular, so that X1 exists.
The polynomial matrix A(L) can be completely characterized in terms of the
xi's and ﬁi's. We obtained perturbations on A(L) by altering the values of
its maximal roots without touching x}, i = 1, v.., 14, or ﬁi, i=3, .4
14,  For (u1,u2) £ R2, let A(L;u1,p2) denote such a perturbation. It is

uniquely represented as follows:
(A.2) A(Ljuq,u,) = E(L)XG(L;u1,u2)X'1

where E(L) = A(L)XG(L;{I1,1—12)'1X-1 and

1—u1L 0

(A.3) G(L3uq,ny) = .
0 1-u2L
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Also, K(L) is a sixth order matrix polynomial in L with A(0) = I. The latter
follows trivially from the fact that A(0) = G(O;ﬁ1,§2) = I. To see the for-
mer, note that A(L)X = A(L)XG(L;1-11,ﬁ2)"1 is a sixth order matrix polynomial in
L since the ith column of A(L)X is proportional to (1—ﬁiL), i =1, 2. This
follows from the fact that the il column of A(ﬁi_1)X contains zeroes, i = 1,
2. It ean be verified that A(L;1.00,1.00) = (1-L)A(L), which is a first
difference model for y,.

We measure the plausibility of A = 39.24 relative to a given VAR
model by its proximity to the central tendency of the likelihood ratio test
statistic, as implied by the model. To establish our claim that without a
maximal root of 1.003 in A(L), A = 39.24 is implausible, we require the den-
sity function for the likelihood ratio statistic implied by each of the three
models: A(L;1.000,1.003), A(L;0.991,1.000) and A(L) = A(L;0.991,1.003).
These were calculated based on 5,000 artificial data sets of UU8 observations
on y, generated from each of the three models. The ingredients that went into
each simulation were one of the above-mentioned sets of VAR coefficients, the
actual February-August 1948 observations on y, and a set of 4u8 disturbances,

randomly sampled from e , t = 1, ..., 448. On each artificial data set, we

£?
computed a likelihood ratio statistiec using the same procedure as the one used
to arrive at A = 39.24 (see section 5.2). This gave us three frequency dis-
tributions of likelihood ratio statistics, which approximate the underlying
density functions of interest and are plotted in fig. A1. The empirical value
of the likelihood ratio statistie, 39.24, is indicated on the horizontal
axis. The other two curves in fig. A1 are not relevant at this point, but
play a role in our discussion below.

Note first from fig. A1 that A = 39.24 is very plausible under

DGMk. [See the curve labeled A(L;0.991,1.003).] In particular, 71.46% of the
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simulated likelihood ratio statistics from this model exceed 39.24. When the
0.991 root in A(L) is replaced by unity, the frequency distributioﬁ of likeli-
hood ratio statistics shifts only a little to the left [see the curve labeled
A(L31.00,1.003)]1, with the consequence that A = 39.24 remains plausible. In
this case, 30.64% of the simulated likelihood ratio statistics exceed 39.24,
Thus, whether the second largest root in A(L) is 0.991 or 1.000 makes rela-
tively little difference to the magnitude of the likelihood ratio statistiec,.
This strongly contrasts with the quantitatively large role played by the
explosive root. When the 1.003 root is replaced by 1.000, the distribution of
likelihood ratio statistics shifts so sharply left that A = 39.24 is extremely
improbable. In particular, of the 5,000 artifiecial likelihood ratio statis-
tics simulated from A(L;0.991,1.000), none exceed the empirical value of
39.24. Thus, as between the two maximal roots of A(L), the explosive one
plays an essential role in accounting for the overwhelming rejection of the
first difference model reported in 5.2.

Another way to measure the role of the two maximal roots of A(L) in
accounting for A = 39.2U examines their impact on the power of the likelihood
ratio statistic to reject the first difference specification. Our power
calculations appear in table A1, The calculations were based on the three
sets of 5,000 artificial likelihood ratio statistics generated in the manner
described above by A(L;1.000,1.003), A(L;0.991,1.003) and A(L;0.991,1.000).
In addition, we obtained 5% and 10% critical values by simulating 5,000 like-
lihood ratio statistics using the A(L;1.00,1.00) model, in which the null
hypothesis is true by construction. These simulations used random samples

of e, t =1, ..., 48, and the February-August initial conditions on y;. The

t’
frequency distribution of the simulated likelihood ratio statisties appears in

fig. A1. It is worth noting that we also calculated this frequency distri-
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bution based on the 5,000 data samples generated by DGME as discussed in
section 3 and found it to be virtually identical to the one implied by
A(L;1.00,1.00). In addition, it is interesting to note that the frequency
distribution implied by A(L;1.00,1.00) lies to the right of the chi-square
distribution with four degrees of freedom. The latter is what blind applica-
tion of covariance stationary, asymptotie sampling theory would have led to.
In particular, the use of standard sampling theory leads to too frequent
rejection of the null hypothesis.

The first row in table A1 shows that the likelihood ratio statistic
has enormous power against A(L;0.991,1.003), the power being close to its
upper bound of 100%. The second row in the table shows that when the 1.003
root of A(L) is replaced by 1.000, the power of the test drops precipitously--
all the way to 23% with a 5% size. This loss of power reflects that By =
0.991 is hard to distinguish from My o= 1.000, the value of ¥y under the null
hypothesis of the test. The third row in the table shows that when the fail-
ure of the null hypothesis is due only to My = 1.003, then the power 1is nearly
as high as it is in the first row and is almost 100%4. This establishes that
the high power in the first row is due principally to the explosive root and
has little to do with the 0.991 root. An informal way to summarize these
results is that although the Euclidean distance implies that 1.003 is closer
to unity than is 0.991, in a likelihood ratio sense 1.003 is very far from

unity and 0.991 is very close to it.
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Table 1

First and second moments of simulated F-statisties.

Data generating

mechanism® Mean® Correlation/variance matrix®
D
DGMO 1.51 0.51 0.31
1.00 0.72 0.36
L
DGMA 4 64 2.60 1.57
2.53 0.81 1.43
L
DGMO 1.18 0.41 0.25
1.10 0.60 0.41
D
DGMA 2.89 1.33 1.24
2.50 0.90 1.43

83ee section 3 for definitions of data generating mecha-

nisms (DGMs).

®This is FJ, i = 0, A and j = D, L. The first element
of the vector pertains to the level F-statistic. See section 5.1
for details.

CThis is vg, i =0, Aand j =D, L. This is the vari-
ance covariance matrix of the simulated level and difference Fs,
except that the 2,1 element of the reported matrix is the correla-
tion. The 1,1 element is the variance of the simulated level

Fs. See section 5.1 for details.



Table 2

Frequenecy of event
(level F > 3.19, difference F < 1.38).

Number of
occurrences
Model {out of 5,000) Frequency
D
DGMO 23 0.46%
L
DGM, 280 5.60%
DGME 8 0.16%
O -
D
DGM y 0.08%




Table 3

Power comparisons of level and difference F.2

Prob (Type I error) = 5% Prob (Type I error) = 10%
Critical value Power Critical value Power
Difference modelb
Difference F 2.11 (5.13%)°¢ 58.18 1.78 (10.14%) 69.60
Level F 2.81 (0.71%) 48.18 2.43 ( 1.89%) 62.48
Level modeld
Difference F 2.31 (3.31%) 51.98 1.95 ( 7.10%) 6l4. 14
Level F 2.42 (1.96%) 93.66 2.04 ( 4.93%) 96.98

8The table reports critical values and powers for the level and
first difference F-statisties. The "eritical value" columns report critical
values for the indicated F-statistics that result in the null hypothesis (Ho)
being rejected the indicated percent (5 or 10) of times when Hy is true.
Here, Hy = LM1 does not Granger-cause LIP. The "power" columns report the
percent of times Hy is rejected using the indicated critical value for the
F-statistic when the alternative hypothesis (H,) is true.

BUnder Hy, the data generating mechanism is DGMg; under Hp, 1t is

DGM, .

CNumbers in parentheses are the area under the F(n,d) distribution
to the right of the associated critical value. In the case of the difference
F-statistic, n = 6, d = 435; in the case of the level F-statistic, n = T,

d = u433.

dunder Hy, the data generating mechanism is DGMB; under Hp, it is
DGM, .



Table 4§

Percent variance in the log of output due to
an orthogonalized disturbance in the log of money

in the unrestricted level model.2®

Confidence intervals

Horizon Standard

{months) Mean deviation T70% 90%

12 18.09 7.37 (10.40-25.91) (6.97-31.41)
Ll 25.00 9.76 (14.66-35.39)  (10.01-42.07)
36 27.80 10.57 (16.63-39.14)  (11.37-46.08)
48 29.71 11.07 (17.99-41.55)  (12.25-48.62)

@These are the results of 5,000 simulated data sets
generated by the estimated unrestricted level model in the manner
described in section 3. On each data set, a seven-lag, bivariate
VAR in levels was estimated. The parameter estimates were then
used--via the formulas in Litterman (1979, p. 76)--to compute the
percent variance in the log of output due to an orthogonalized
innovation in the log of money for each of the indicated hori-
zons. The mean and standard deviation values are the average and
standard deviations of those quantities. An x% confidence inter-
val is a pair of numbers--say, X, and X,--such that x, is greater
than and x, is less than (100-x)/2% of the guantities.



Table 5

Percent variance in the log of output due to

an orthogonalized disturbance in the log of money

in the unrestricted first difference model.2?

Confidence intervals

Horizon Standard

(months) Mean deviation 70% 90%

12 6.99 4.70 (2.29-11.75) (0.90-15.90)
24 13.14 8.66 (4.23-22.28) (1.49-29.77)
36 16.05 10.49 (5.18-27.38) (1.76-36.08)
48 17.58 11.46 (5.65-29.90) (1.91-39.32)

8For an explanation, see footnote 9.



Table A1

Frequency of rejecting a false null hypothesis

(u1 = U2 = 1)-

Roots
My My 5% Size? 10% Size
0.991 1.003 99.94% 99.96%
0.991 1.000 22.58% 34,229
1.000 1.003 98.10% 99.06%

aFrequency of times that the null hypothe-
sis (u1,u2 = 1) is rejected using a critical value for
the likelihood ratio statistic (A defined in section
5.2) that results in rejecting the null hypothesis 5%
of the time when it is true.



Fig. 1. The Restricted Difference Model (H;) Fig. 2. The Unrestricted Level Model {H:)
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NOTE: Figure headings refes to the data-( ism (DGM) used to 5,000 artificial data sets for the iog of M1 [LM1) and the log of

industrial production {L/P}. Than DGM and DGMS are estimated six-lag, bivariate VARs specifiad in tha first difference of LM1 and LIP. DGM;
and DGM; are estimaled seven-lag, bivanale VARs specified in levels of LM1 and LIP. in DGMS and DGMS, the VARs ara restricied so that LM1
doesnolsmerlheLlPoquabon.MweasDGM"mdDGMaeemnmadmxmmmemhmenndeiosum!eauecomﬂom
under tha corresponding hypothesis H. where j = L, D and k = 0, A. Each figura depicts the freq Y bon of three F-
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The numbers 1.38 and 3.19 are Whe empirical ditferance and level F-statistics, respectively.

Figs. 1-4. Frequency distributions of the theoretical and empirical
level and difference F-statistics implied by four hypotheses:

D pyL oL oD
HY, HE, Hy, HR.



Fig. 5. The Restricted Difference Model (7} A ) Fig. 6. Tha Unrestricled Level Modei ()
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NOTE: Figs. 4 + i contain scatterplots of the two simulated F-statistics whose marginal densties are reported in figs.  for i = 1,2, 3, 4. For further
information on these, see the note to figs. 1-4. The x% confidence ellipsoids contain x% of tha points in the scatierplots, for x = 90, §5, See
section 5 and footnote 5 for a discussion of these. Finally, each figure also indicales the location of the empirical F-values. We conciude that the
mode! underlying fig. 6 is tha most plausible, since R is tha only one which contains tha empirical F8 well within the intefior of its scattespiot
{Note that the scales on thesa figures are different)

Figs. 5-8. Scatterplots of the theoretical and empirical
level and difference F-statisties implied by four hypotheses:

HD, Hk, 5, HR.



0.25" . T T 4 '39.24

80

NOTETheIwmfveslabeledA(L.u.mHorvmousvabesolmuzam rrequenc/d-smbmonsoimebkehhood Tatio statistic testing the nul hypothesis
of a six-lag bivanate VAR specification in differences versus the ait ofa in fevais. The fifth curve ia the
densiy function of the chi-square distribution with four degrees of reedom. Thenumbel3924 nsmeompmcalvakndmhkehhoodrato

statistc
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likelihood ratio statistics testing the level and difference specifications.



