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Abstract

We study several popular monetary models which generate a non-
degenerate stationary distribution of money holdings. Across these
environments, our principal finding is as follows: a monetary policy
that sets long run nominal interest rates to zero (the Friedman rule)
does not typically maximize ex-post social welfare if it can generate
redistributive effects. An increase in the rate of growth of the money
supply has the standard partial-equilibrium effect of making money a
less desirable asset thereby decreasing the utility of all moneyholders.
A second, general-equilibrium effect, is a transfer from one type of
agent to the other. For each environment, when the rate of growth of
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the money supply is not too high, an increase in the latter away from
the Friedman rule may produce a transfer effect that dominates the
partial equilibrium effect thereby rendering the Friedman rule ex-post
suboptimal.

Keywords: Friedman rule; monetary policy, redistribution; hetero-
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1 Introduction

Until 1951, the Federal Reserve System of the US explicitly pegged nomi-

nal interest rates on the Treasury’s debt obligations. In March 1951, the

Treasury-Fed Accord ended this explicit arrangement, ostensibly freeing the

Fed to pursue an independent monetary policy. It was natural for economists

to ask: how should an independent yet benevolent central bank conduct mon-

etary policy? Milton Friedman (1969) offered a simple and yet deep answer

(the Friedman rule): since money is an asset, the central bank ought to

change the stock of outstanding money at a rate that causes the real rate

of return on money to equal the real return rate on other physical assets.

Over the next three decades, researchers have studied Friedman’s dictum us-

ing the two main workhorse models for monetary theory, the infinitely-lived

representative agent (ILRA) model and the overlapping generations (OG)

model. In the context of infinitely-lived-representative-agent models, when

lump-sum taxes and transfers are available, the Friedman rule is the optimal

monetary policy.1 The seminal reference on the Friedman rule in OG models

is Wallace (1984). Wallace shows that once heterogeneity among agents is

explicitly considered, it may be impossible for the central bank to settle on

one monetary policy rule, including the Friedman rule, that benefits every

agent.

By construction, monetary policy cannot have redistributive effects in

representative-agent models. Yet these effects are known to be quantitatively

1See, for instance, Woodford (1990) and Ljunqvist and Sargent (2000). Note that
Chari, Christiano and Kehoe (1996) and Correia and Teles (1996) extend this to the case
in which other distortionary taxes are present.
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significant and important (see, for example, Erosa and Ventura, 2002). For

agents holding a disproportionate amount of money, their welfare is clearly

negatively related to inflation. In contrast, agents holding relatively less

money can realize welfare gains from higher inflation. This paper shows the

following: If monetary policy can have redistributive effects then, a monetary

policy that sets long-run nominal interest rates to zero – that is the Friedman

rule – does not typically maximize ex-post social welfare, and in some cases,

it does not maximize ex-ante welfare. Indeed, a necessary condition for the

Friedman rule to be suboptimal ex-post is that changes in the rate of growth

of the money supply have redistributive effects.

We study different monetary environments in which heterogeneity among

agents produces a long-run non-degenerate distribution of money holdings.

In particular, we study three different monetary economies: 1) the random-

matching model of money due to Lagos and Wright (2002), 2) a turnpike

model of the type introduced by Townsend (1980), and 3) an overlapping

generations (OG) model with stochastic relocation as in Schreft and Smith

(1997) and Smith (2002). In each model, agents have heterogeneous money

holdings in equilibrium. In the LW frameworks the heterogeneity comes from

differences in agents’ preferences.2 In the turnpike environment it arises from

different endowment patterns. In the OG model agents alive in the same

period may be from different generations. Our results are robust to these

various ways of obtaining heterogenous money holdings in equilibrium.

In each of the models we study, an increase in the rate of growth of

2In the appendix we also study a textbook money-in-the-utility-function infinite horizon
economy. In that model, as in the LW framework, heterogeneity of money holdings occurs
because agents have different preferences.
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the money supply away from the Friedman rule has two effects. First, the

standard partial-equilibrium effect is to make money a less desirable asset

thereby decreasing the utility of all agents. Second, the general-equilibrium

effect is a redistributive transfer from one type of agent to the other. We

show, for each environment, examples for which the transfer effect dominates

the partial equilibrium effect when the rate of growth of the money supply

is not too high.

Markets are assumed to be incomplete, implying it is impossible to undo

transfers by means of non-distortionary fiscal policy. Deviating from the

Friedman rule therefore produces multiple Pareto optimal yet non-comparable

allocations. This assumption is crucial for our results. Indeed, if the central

bank can levy type-specific lump-sum taxes, it is always best to implement

the Friedman rule. This is because it is possible to offset any redistribution

induced by monetary policy with an appropriate lump-sum tax or transfer.

Type-specific lump-sum taxes and transfers are not the only way redistri-

bution effects can be undone. Bhattacharya, Haslag, and Russell (2003),

Haslag and Martin (2003), and Da Costa and Werning (2003) describe other

mechanisms which produce the same result.

In the models we consider, the policy maker who chooses the rate of

growth of the money supply is faced with different types of agents and can

assign different weights to each type. Hence, we consider ex-post social wel-

fare. Since it is possible to specify a social welfare function which puts

enough weight on the type that benefits from such a deviation, it follows

ex-post social welfare may not be maximized at the Friedman rule.3

3Under a different approach we could have appealed to a political economy criterion.
For example, we could assume agents vote on their preferred policy. We can show, for
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Our work is part of a growing literature studying environments (with

heterogeneity) in which the Friedman rule is not optimal (see, for exam-

ple, Levine 1991, Molico 1999, Deviatov and Wallace 2001, Smith (2002a,b),

Edmonds 2002, Green and Zhou 2002). These papers consider an ex-ante

welfare criterion and argue the Friedman rule might not be optimal from

such a standpoint. In other words, their analysis assumes that agents “pick

their preferred monetary policy under a “veil of ignorance”, before knowing

their true identity” [Ljungqvist and Sargent (2000)]. In contrast, we present

results using a ex-post welfare criterion and can therefore better capture the

“conflict of interest” between different types of agents that a benevolent pol-

icy maker has to consider. Our paper is also related to recent work that

studies the impact of agent heterogeneity on monetary policy. Kocherlakota

(2002) shows monetary policy should react to the degree of heterogeneity in

the economy. Berentsen, Camera, and Waller show a one shot deviation from

the Friedman rule might increase ex-ante welfare in a search economy of the

type introduced by Lagos and Wright (2002).

The rest of the paper proceeds as follows. Section 2, 3, and 4 describe

the search and matching economy, the turnpike economy, and the overlapping

generations economy, respectively. Section 5 concludes. The money-in-the-

utility function economy and proofs of certain results are relegated to the

each of the economies we study, examples where at least 50 percent of the agents prefer
a deviation from the Friedman rule. Alternatively, we could assume agents influence the
choice of monetary policy by spending resources lobbying. For example, the “distance”
between a group’s preferred policy and the chosen policy could depend on the ratio of
resources this group spends lobbying to the total resources spent lobbying. The Friedman
rule will not be chosen for any such rule that implements a policy strictly between different
group’s preferred policies. In this paper, however, we limit ourselves to showing Pareto
incomparable allocations can arise.
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appendices.

2 A search economy

This section considers a search model of the type introduced by Lagos and

Wright (2002, hereafter, LW).4 Time is discrete and there is a continuum of

mass 1 of infinitely-lived agents. Each period is divided in two sub-periods.

It is assume that there are two types of goods: special goods which are traded

in a decentralized market during the first sub-period and general goods which

are traded in a centralized market during the second sub-period.

We consider each market in turn, starting with the centralized market. As

in LW, preferences in the centralized market are assumed to be quasi-linear,

so that the utility from consuming an amount X and producing an amount

H is given by U(X) − AH, where U is twice continuously differentiable,

U ′ > 0, U ′′ < 0, and A > 0. As in LW, is also assumed U is unbounded and

U ′(X∗) = A for X∗ ∈ (0,∞) with U(X∗) > X∗.

In the decentralized market, agents only consume and produce a subset of

the goods. Agents do not produce the goods they like to consume. We assume

there are no double coincidence of wants and denote by σ the probability of a

single coincidence of wants. Unlike the standard LW model, agents also differ

in how much they value special goods relative to general goods. The utility

derived by a type-α agent from consuming an amount x and producing an

amount h is given by αu(x)− c(h), where α > 0, u and c are at least thrice

continuously differentiable, u(0) = c(0) = 0, u′ > 0, c′ > 0, u′′ < 0, c′′ ≥ 0,

4We are indebted to Randy Wright for showing us how to work out the example in this
section.
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and u(q̄) = c(q̄) for some q̄ > 0.

A central bank can expands or contracts the money supply via lump-sum

transfers or taxes, denoted by τ , during the centralized market. The money

supply evolves according to Mt = (1 + z)Mt−1. Hence, τ = zMt−1.

Let Wα(m) be the value function for a type α agent entering the central-

ized market with money m and Vα(m) be the value function for this agent

entering the decentralized market with money m. The problem of an agent

in the centralized market is

Wα(m) = max
X,H,m+

{U(X)− AH + βVα(m+)}

subject to

X = ωH + φ(m + τ −m+), (1)

where ω denotes the real wage, φ is the inverse of the price level, and m+

is the money carried out of the market. We assume ω is fixed; for example,

because of a linear technology.

Assuming an interior solution, we can substitute for H to get

Wα(m) = max
X,m+

{
U(X)− A

ω

[
X − φ(m + τ −m+)

]
+ βVα(m+)

}
.

The first order conditions for X and m+ are, respectively,

U ′(X) =
A

ω
, (2)

Aφ

ω
= βV ′

α(m+). (3)

Also notice Wα(m) is linear since W ′
α(m) = Aφ

ω
for all m. As in LW, the cost

of producing H is linear, X and m+ are independent of m. Hence, if there

is only one type, all agents consume the same amount and leave the market
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with the same money holdings. With more than one type, however, m+ may

depend on α as can be seen from (3).

We now turn to the decentralized market. Let the joint distribution of

money and types in this market be given by F (m̃, ẽ). The above analysis

shows F is degenerate conditional on types. In other words, all type-α agents

exit the centralized market with the same amount of money m+
α and thus

enter the decentralized market with the same amount mα. Hence, it is enough

to know the distribution of types G(α̃).

We can write the value function for an type-α agent entering the decen-

tralized market with money m as

Vα(m) = σ

∫
{−c[qα̃(mα̃)] + Wα[m + dα̃]} dG(α̃)

+σ {αu[qα(m)] + Wα[m− dα(m)]}+ (1− 2σ)Wα(m). (4)

This expression states that with probability σ, the agent is a seller who

produces a quantity qα̃(mα̃) of special goods in exchange for dα̃ units of

money. With probability σ the agent is a buyer who consumes qα(m) units

of special goods acquired with dα(m) units of money. In particular, we have

assumed the terms of trade q and d depend on the buyer’s but not the seller’s

money balances, as is standard in this kind of model. We have also assumed,

as will be verified below, the terms of trade depend on the buyer’s but not

the seller’s type. Now take the partial derivative of the above expression with

respect to m:

V ′
α(m) = σ

∫
+W ′

α[m + dα̃(mα̃)]dG(α̃) + σαu′[qα(m)]q′α(m)

+σ[1− d′α(m)]W ′
α[m− dα(m)] + (1− 2σ)W ′

α(m).
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Recall W ′
α(m) = Aφ

ω
for all m, so we can write

V ′
α(m) = σαu′[qα(m)]q′α(m) + [1− σd′α(m)]

Aφ

ω
. (5)

Hence, V ′
α(m) depends on an agent’s own type, α, and money holding, m,

but not on other agents type and money holdings.

As in LW, we assume the terms of trade are determined by the generalized

Nash solution where the buyer has bargaining power θ and the threat points

are given by the continuation values. First, note for any real d and any type

α, Wα(m + d)−Wα(m) = dAφ
ω

. It follows the terms of trade (q, d) between

a buyer of type α with money holding m and a seller of any type is given by

max
q,d

[
αu(q)− d

Aφ

ω

]θ [
−c(q) + d

Aφ

ω

]1−θ

subject to d ≤ m. Thus, as claimed above, the terms of trade do not depend

on the seller’s type.

As in LW, it can be shown that in any equilibrium it must be the case

d = m. In order to find q, we take the partial derivative of the above

expression with respect to q and set it equal to zero. This implies q = qα(m)

is the solution to

m
Aφ

ω
= gα(q), (6)

where gα(q) is defined as

gα(q) ≡ θαu′(q)c(q) + (1− θ)αu(q)c′(q)

θαu′(q) + (1− θ)c′(q)
.

For example, if the buyer has all the bargaining power, so θ = 1, this expres-

sion reduces to gα(q) = c(q).

In the general case, implicit differentiation yields

q′α(m) =
Aφ

ωg′α(q)
. (7)
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We can substitute this expression, as well as d′α(m) = 1, into V ′
α(m), given

by equation (5). Then, with equation (3), we get

Aφ

ω
= β

{
σαu′(q+

α )
Aφ+

ωg′α(q+
α )

+ (1− σ)
Aφ+

ω

}
,

where we use the superscript + to denote next period. Since we focus on

steady states, we know q is constant and φ = (1+z)φ+. The above expression

then reduces to

1 + z = β

[
σ

αu′(qα)

g′α(qα)
+ (1− σ)

]
. (8)

This expression determines the equilibrium value of qα for an agent of type

α. From equation (6) we get mα = ωgα(qα)
Aφ

.

We can simplify expression (8) further. Define β ≡ 1/(1 + r) and the

nominal interest rate (1 + i) = (1 + z)(1 + r). Then we can write

1 +
i

σ
=

αu′(qα)

g′α(qα)
.

The price φ can be obtained through the money market clearing condition∫
mαdG(α) = M , since the qα’s are determined by equation (8).

Now let m̂α denote the money with which an agent of type α enters the

centralized market. m̂α will depend on the type of meeting the agent was in

during the previous decentralized market. In that market, the agent might

have been either a seller, or a buyer, or no trade occurred. Hence,

m̂α =



0 with probability σ,

mα with probability 1− 2σ,

mα + mα̃ with probability σG(α̃).
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Since m̂α varies across agents according to their type, so must Hα. Indeed,

we can rewrite equation (1) as follows

ωHα = X − φ(m̂α + τ −m+
α ).

A similar expression must hold for the average m̂α across type α agents,

which is given by m̄α = (1 − σ)mα + σM , where M ≡
∫

mα̃dG(α̃). Hence,

we have

ωH̄α = X − φ(m̄α + τ −m+
α )

= X − φ(σ + z)(M −mα), (9)

where we have made use of the fact that m+
α = (1 + z)mα, in steady state,

and τ = zM .

Note X is the same across type and is thus independent of the rate of

growth of the money supply z. Assume φ is fixed for a moment, for any

type α holding less than the average money balances M an increase in z will

reduce expected hours H̄α. Since H enters the utility function linearly this

increases expected utility. Clearly the opposite is true for any type holding

more than the average money balances. An increase in z might also change

Vα(m). From inspection of equation (4), however, it is clear that this effect

can be made as small as we want by reducing α.

This can be illustrated by a simple example. Assume preferences are

ln(X) − H in the centralized market and αi ln(x) − h in the decentralized

market, with αi ∈ {αL, αH}, αL < αH . The two types L and H have equal

mass. We also assume θ = 1 so buyers make take-it-or-leave-it offers. Under

this assumption, equation (6) implies

m
φ

ω
= q.
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It is easy to verify that equation (8) becomes

1 + z = β

[
σα

1

qα

+ (1− σ)

]
.

Thus the expressions for qα and mα are given by

qα =
αβσ

[1 + z − β(1− σ)]

and

mα =
ω

φ

αβσ

[1 + z − β(1− σ)]
.

The money market clearing condition is

M =
1

2

βσ

[1 + z − β(1− σ)]

ω

φ
(αL + αH) .

This determines the price φ. With a little algebra we can write equation (9)

for type L as

H̄αL
= 1− 1

2

βσ(σ + z)

[1 + z − β(1− σ)]
(αH − αL) .

Let Γ ≡ (σ + z)/ [1 + z − β(1− σ)]. Since αH > αL, average hours for type

L will decrease if ∂Γ/∂z > 0.

∂Γ

∂z
=

1 + z − β(1− σ)− (σ + z)

[1 + z − β(1− σ)]2
,

which is positive for β ∈ (0, 1).

We can summarize these result in the following proposition.

Proposition 1 Increasing the rate of the money supply creates a transfer

from types with high α to types with low α which can make types with low α

better off.
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If φ is kept fixed, it is easy to see how the transfer operates; a higher

z allows types with low α to work less. Of course, in equilibrium, φ will

decrease, which makes all types worse off. However, this partial equilibrium

effect is more than compensated for by the transfer for α sufficiently low.

Agents with such low values of α are made better off by a deviation from

the Friedman rule. Hence, different values of z give Pareto incomparable

allocations. It is easy, by putting sufficient weight on the utility of types

with a low α to write a social welfare function that is not maximized at

z = β − 1.

This is true despite the fact that, as in LW, it can be shown from equation

(8) that the Friedman rule generates the second best equilibrium in terms of

efficiency. Further, if θ = 1, so that there is no hold up problem associated

with bargaining, then equation (8) yields gα(q) = c(q) whenever z = β. This

implies the first best, αu′(qα) = c′(qα).

Because increasing z reduces the utility of both types of agents, the Fried-

man rule would be optimal if it were possible to achieve the transfer from

types with high α to types with low α through other, less distorting, means.

For example, assume type-specific lump-sum taxes and subsidies are avail-

able. It is possible to implement a transfer, by taxing high-α types and

subsidizing low-α types, without increasing z. Hence a necessary condition

for the Friedman rule to be suboptimal ex-post is that changes in the rate of

growth of the money supply have redistributive effects.
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3 A Turnpike Model

This section studies a version of the turnpike model developed in Townsend

(1980) and described in Ljungqvist and Sargent (2000). Time is indexed by

t = 0, 1, 2, ..., there is a single, perishable consumption good and a countably

infinite number of infinitely-lived agents. There are two types of agents dif-

fering in their endowment patterns. Specifically, type-E agents are endowed

with 1 unit of the consumption good at even dates and nothing at odd dates.

Type-O agents are endowed with 1 unit of the consumption good at odd

dates and nothing at even dates. Each type-O agent is endowed with M0

units of fiat money at date 0.

We restrict market participation in two ways. First, at each date t, there

is a single pairing of one type-E and one type-O populating a market. Sec-

ond, a type-E will be paired with the specific type-O agents only once.5

These restrictions, combined with the absence of any common agent or in-

termediary, eliminates the possibility of debt issues. In what follows, the

utility function u is assumed to be CRRA and is described as

u(c) =
c1−ρ

1− ρ
(10)

where c is consumption.

3.1 The type E agent’s problem

The problem of type E agents can be written recursively as follows:

v(m) = max u(c) + βu(c′) + β2v(m′′),

5We define IE = [1E , 2E , ...] and JO = [1O, 2O, ...]. Let iE ∈ IE and jO ∈ JO. Then iE

is paired with jO only once.
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subject to

c + (1 + z)m′ = 1 + τ + m, (11)

c′ + (1 + z)m′′ = τ + m′, (12)

where c is consumption in even periods and c′ is consumption in odd periods,

m is the amount of real money balances the agent holds at the beginning of

an even period, τ is a real lump-sum money transfer from the government

which is positive if the money supply grows and negative if it shrinks, and

(1 + z) is the rate of growth of the money supply which corresponds, in this

static environment, to the inflation rate.

We know if (1 + z) > β, then m = m′′ = 0. The first order conditions

imply

(1 + z)u′(c) = βu′(c′), (13)

which using (10) yields

c′

c
=

(
β

(1 + z)

) 1
ρ

, (14)

while (12) yields

c + (1 + z)c′ = I (15)

where I ≡ 1 + τ + (1 + z)τ . It is easy to verify that

c =
I

1 + (1 + z)
(

β
(1+z)

) 1
ρ

, (16)

c′ =

(
β

(1 + z)

) 1
ρ I

1 + (1 + z)
(

β
(1+z)

) 1
ρ

. (17)
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3.2 The type O agent’s problem

Similarly, the problem of type O agents can be written as

v(m̄) = max u(c̄) + βu(c̄′) + β2v(m̄′′),

subject to

c̄ + (1 + z)m̄′ = τ + m̄, (18)

c̄′ + (1 + z)m̄′′ = 1 + τ + m̄′, (19)

where c̄ is consumption in even periods and c̄′ is consumption in odd periods,

m̄ is the real money balances the agent holds at the beginning of an even

period, and τ and (1 + z) are as defined above.

We know if (1+z) > β, then m̄′ = 0. Standard aforedescribed arguments

yield

c̄ =
I

(1 + z) +
(

(1+z)
β

) 1
ρ

, (20)

c̄′ =

(
(1 + z)

β

) 1
ρ I

(1 + z) +
(

(1+z)
β

) 1
ρ

. (21)

We can combine equations (16) and (20) to get

c̄

[
(1 + z) +

(
(1 + z)

β

) 1
ρ

]
= c

[
1 + (1 + z)

(
β

(1 + z)

) 1
ρ

]
.

Feasibility requires that c + c̄ = 1. A little algebra yields

c =
(1 + z)

1
ρ

β
1
ρ + (1 + z)

1
ρ

,

c′ =
β

1
ρ

β
1
ρ + (1 + z)

1
ρ

.
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Clearly, c → c′ as (1 + z) → β. Moreover, the gap between c and c′ increases

as (1 + z) increases. Why is there a gap between c and c′? The reason has

to do with the odd-even endowment pattern. If the return to money is less

than unity, an agent is always better off receiving a unit of endowment earlier

than later, since a unit invested in money earns less than the value of the

investment itself. As (1 + z) increases, the return to money falls thereby

increasing the gap between odd and even period consumption.

3.3 Evaluating type E agents’ welfare

Consider the start of an even date. At such a date, the type E agent would

prefer an increase in the money growth rate away from the Friedman rule, as

long as this increase is not too large. A type O agent prefers the Friedman

rule. An increase in the rate of growth of the money supply means that

money has less value. This allows type E agent to give up less of their

endowment and consume more. Neither agent likes positive inflation though.

Formally, the welfare of a type E agent is given by

UE =
∞∑

t=0

β2t [u(c) + βu(c′)] =
1

1− β2
[u(c) + βu(c′)] . (22)

For future use, note that

∂u(c)

∂(1 + z)
=

[
β

1
ρ + (1 + z)

1
ρ

]−ρ

[
β

1
ρ + (1 + z)

1
ρ

]2(1−ρ)

1

ρ

1

(1 + z)2
((1 + z)β)

1
ρ . (23)

and

∂u(c′)

∂(1 + z)
= −

[
β

1
ρ + (1 + z)

1
ρ

]−ρ

[
β

1
ρ + (1 + z)

1
ρ

]2(1−ρ)

1

ρ

1

(1 + z)β
((1 + z)β)

1
ρ . (24)

18



Since
∂UE

∂(1 + z)
=

1

1− β2
[

∂u(c)

∂(1 + z)
+ β

∂u(c′)

∂(1 + z)
], (25)

we have

∂UE

∂(1 + z)
=

1

1− β2

[
β

1
ρ + (1 + z)

1
ρ

]−ρ

[
β

1
ρ + (1 + z)

1
ρ

]2(1−ρ)

((1 + z)β)
1
ρ

ρ(1 + z)

(
1

(1 + z)
− 1

)
. (26)

Proposition 2 For all β ∈ (0, 1), ρ > 0, ∂UE

∂(1+z)
> 0 if (1 + z) ∈ [β, 1).

Proof. This is immediate from equation (26).

Proposition 2 shows type-E agents benefit if the central bank chooses a

money growth rate greater than that prescribed by the Friedman rule. Thus,

if the central bank puts enough weight on the welfare of type E agents, it

will choose 1 + z > β.

As in the economy of the previous section an increase in the rate of growth

of the money supply has two effects. First, it reduces the utility of all agents

as it makes their consumption more volatile (c deviates more from c′, which

hurts any risk-averse agent). On the other hand, it creates a transfer from

type O to type E agents. If the money stock does not grow too fast, the

value of the transfer to type E agents exceeds the cost in terms of volatility

of consumption.

Also, as in the previous economy, the Friedman rule would be optimal

if it were possible to make transfers that are less distorting. The type of

transfer described in the previous section can be implemented if type-specific

lump-sum transfers are feasible. Hence, again, a necessary condition for the

Friedman rule to be suboptimal ex-post is that changes in the rate of growth

of the money supply have redistributive effects.
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4 A OG Model with random relocation

We consider a model economy in which money is valued because of limited

communication across two spatially separated locations. Only a succinct

description of the economic environment is provided; the interested reader is

referred to Schreft and Smith (2002) and Bhattacharya, Haslag, and Russell

(2004) for more details.

Time is discrete and denoted by t = 1, 2... The world is divided into two

spatially separated locations. Each location is populated by a continuum of

agents of unit mass. Agents live for two periods, and receive an endowment

of ω units of the single consumption good when young and nothing when

old. There also is an initial old generation whose members are endowed with

an amount of cash M0. Only old-age consumption is valued. Let ct denote

old-age consumption of the members of the generation born at date t; their

lifetime utility is given by u(ct) =
c1−ρ
t

1−ρ
, where ρ ∈ (0, 1).

After receiving their endowment and placing it into a bank, agents learn

whether they must move to the other location or not. Let α denote the

probability that an individual will be relocated. We assume a law of large

number holds so α is also the measure of agents that are relocated. α is the

same on both islands so that moves across location are symmetric. Movers

redeem their bank deposits in the form of money as this is the only way for

them to acquire goods in the new location. In contrast, nonmovers redeem

their deposits in the form of goods. Goods deposited in the bank can be

used to acquire money from old agents belonging to the previous generation

or put into storage. Each unit of the consumption good put into storage at

date t yields x > 1 units of the consumption good at date t + 1, where x is
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a known constant.

The CB can levy lump-sum taxes τ on the endowment of agents by col-

lecting the tax in the form of money balances removed from the economy. In

contrast, a lump-sum subsidy is received in the form of a money injection.

The money supply evolves according to Mt+1 = (1 + z) Mt and z is chosen

by the CB in a manner that will be explained below. We assume x > 1
1+z

implying that money is a bad asset. Let pt denote the time t price level; in

steady states, pt+1 = (1 + z) pt. Also, since we focus on steady-states, we

drop the time subscript in what follows.

Agents deposit their entire after-tax/transfer endowments with a bank.

The bank chooses the gross real return it pays to movers, dm, and to non-

movers, dn. In addition, the bank chooses values m (real value of money

balances) and s (storage investment) respectively. These choices must sat-

isfy the bank’s balance sheet constraint

m + s ≤ ω − τ. (27)

Banks behave competitively, so they take as given the return on their in-

vestments. In particular, the return on real money balances is pt/pt+1. If

x > pt/pt+1 banks will want to hold as little liquidity as possible since money

is dominated in rate of return. If x = pt/pt+1, banks are indifferent be-

tween money and storage. In this case, we consider the limiting economy as

pt/pt+1 → x.

Banks must have sufficient liquidity to meet the needs of movers. This is

captured by the following expression:

αdm(ω − τ) ≤ m

1 + z
. (28)
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A similar condition for non-movers, who consume all the proceeds from the

storage technology, is given by

(1− α)dn(ω − τ) ≤ xs. (29)

Banks maximize profits. Because of free entry, banks choose in equilibrium

their portfolio in a way that maximizes the expected utility of a representative

depositor. The bank’s problem is written as

max
dm,dn

(ω − τ)1−ρ

1− ρ

{
α (dm)1−ρ + (1− α) (dn)1−ρ} (30)

subject to equations (27), (28), and (29).

Let γ ≡ m
ω−τ

denote the bank’s reserve-to-deposit ratio. Then, since equa-

tions (27), (28), and (29) hold with equality, the bank’s objective function is

to choose γ to maximize

(ω − τ)1−ρ

1− ρ

{
αρ

[
γ

1 + z

]1−ρ

+ (1− α)ρ [(1− γ)x]1−ρ

}
. (31)

Bhattacharya, Guzman, Huybens, and Smith (1997) show that the reserve

to deposit ratio chosen by the bank is given by

γ =
1[

1 + 1−α
α
{(1 + z) x}

1−ρ
ρ

] (32)

and that it increases as 1 + z decreases. For the initial old, consumption

is equal to the real value of money balances. Let M0 denote the quantity

of nominal money balances held by a member of the initial old generation.

Then, c0
1 = M0

p1
, where p1 = (1+z)M0

γ(ω−τ) . Note, in equilibrium, the reserve-

to-deposit ratio and the lump-sum tax are functions of the money growth
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rate. At a steady state, the central bank maximizes the following objective

function

W (z) = (1− β)

(
M0

p1

)1−ρ

1− ρ
+ β

{Ω(z)}1−ρ

1− ρ
Γ(z)

where Ω(z) := ω− τ (z), and Γ(z) := αρ
[

γ(z)
1+z

]1−ρ

+(1−α)ρ [(1− γ (z))x]1−ρ.

This allows us to find the rate of growth of the money supply chosen by

the central bank under different assumptions about the weight of the initial

old generation and, in a steady state, all other generations. For example,

if β = 0, then the central bank only considers the utility of the initial old.

Conversely, as β → 1, the weight of the initial old goes to zero and so the

central bank maximizes the utility of a representative generation (in steady

states) and completely ignores the initial old.

For future reference, note that, in steady states,

−τ =
Mt −Mt−1

pt

= −m

(
z

1 + z

)

m = γ (ω − τ) =
γω (1 + z)

(1 + z)− γz

and hence,
M0

p1

=
M1

p1

M0

M1

= m
1

1 + z
=

γω

(1 + z)− γz
.

Proposition 3 The optimal rate of growth of the money supply is given by

1 + z = 1 +
1− β

β

γ

αρ
,

where γ is computed from (32), along with the constraint that 1 + z ≥ 1
x
.

Proof. See Appendix.
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It is straightforward to see that if β → 1, then 1 + z → 1. As β → 0,

in the limit the weight is all on the initial old; the constraint 1 + z ≥ 1
x

eventually binds and the central bank implements the Friedman rule.

Bhattacharya, Haslag, and Russell (2004) and Haslag and Martin (2003)

study how an increase in the rate of growth of the money supply away from

the Friedman rule creates a transfer from agents who hold money to those

who do not. Indeed this effect may dominate the negative effects of a higher

money growth rate and can render the Friedman rule suboptimal. As in the

previous economies, here, deviations from the Friedman rule also come at

a cost since the difference in consumption between movers and nonmovers

increases as the rate of growth of the money supply increase. When the

money stock does not grow too fast, the value of the transfer exceeds the cost

created by the volatility in consumption. Edmond (2002) has a comparable

result. Again, the sub-optimality of the Friedman rule hinges crucially on the

assumption that it is not possible to undo the transfers created by changes

in the rate of growth of the money supply. Bhattacharya, Haslag and Russell

(2004) show that when these transfers can be undone, the Friedman rule is

once again optimal. Hence, once again, a key component of the explanation

for why the Friedman rule is suboptimal (ex-post) here is that changes in the

rate of growth of the money supply have unremovable redistributive effects.

Note also that unlike in the two economies studied above, here the Friedman

rule is additionally sub-optimal ex-ante as shown in Smith (2002).
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5 Summary and conclusion

In this paper, we consider steady state monetary policy in several alternative

economic environments: two economies with infinitely-lived agents and an

overlapping-generations economy.6 We provide examples where the Fried-

man rule is not the ex-post welfare maximizing monetary policy in these

economies. To varying degrees, these results are known in the literature.

Certainly this is true in the overlapping generations economy. Our aim is to

explain why the welfare maximizing policy is not the Friedman rule in each

case. Indeed, our main contribution is to offer one common explanation to

account for the shared monetary policy results.

An key characteristic of the models we considered is that agents have

heterogenous money holding. This heterogeneity arises from differences in

agents’ preferences in the Lagos-Wright (2002) framework (as well as in the

money-in-the-utility-function economy). It is generated by differences in en-

dowment patterns in the turnpike economy. Finally, differences in the age of

agents living during the same period are responsible for this heterogeneity

in the OG framework (old agents may hold money while young agents do

not). In each case, a change in the rate of growth of the money supply has a

redistributive effect. As money growth rises, for example, agents who hold a

disproportionately large amount of money see the real value of their money

holdings diminish. At the same time agents who are holding comparatively

less money benefit from the change in money growth because they are able to

consume more. In each case, we provided an example where an increase in the

rate of growth of the money supply creates Pareto incomparable allocations.

6In addition, we study a money-in-the-utility-function economy in the appendix.
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Heterogeneity, therefore, plays an important role in explaining why the

Friedman rule does not maximize ex-post steady-state welfare in a variety of

economic settings. In an infinitely-lived-representative-agent economy, het-

erogeneity is suppressed; agents are identical and therefore hold the same

levels of money balances in steady state. A second important assumption in

each of the economies considered is that markets are incomplete so agents, or

the monetary authority, are unable to undo the redistribution caused by an

increase in the rate of growth of the money supply away from the Friedman

rule. For example, in each of the environments we consider, the Friedman

rule would be optimal if type-specific lump-sum taxes were available.
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Appendix

A A money-in-the-utility-function economy

This section considers a money-in-the-utility function economy with two

types of agents who differ in the marginal utility they receive from real

balances. Time is discrete and denoted by t = 0, 1, 2, ... The economy is

populated by a continuum, of unit mass, of infinitely-lived agents. As men-

tioned above, the population is divided into two groups. Let µ be the measure

of agents that place a relatively high value on the services from real money

holdings and 1− µ is the measure of agents that place a relatively low value

on the services of real money holdings. This distinction will be made precise

below.

There are two assets in the economy, money and capital. There is a single

consumption good which is perishable. It can be transformed into capital at

a one-for-one rate or used to acquire money balances. Agents can produce

the consumption good with capital accumulated up to date-t, denoted kt−1,

using a technology f (kt−1). The function f has the following properties:

f ′ (kt−1) > 0, f
′′
(kt−1) < 0, limk→0 f ′ (kt−1) = ∞, and limk→∞ f ′ (kt−1) =

0. In addition, undepreciated capital can be converted into units of the

consumption good at a one-for-one rate. We use δ to denote the capital

depreciation rate.

The government has a balanced budget period by period. At each date t ≥

0 , the government finances a lump-sum tax or transfer, denoted τ , by altering
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the money supply. Formally, the date-t government budget constraint is:

τt = Mt−Mt−1

pt
, where Mt denotes the per-capita quantity of nominal money at

date t and pt is the price level at that date. We assume the government follows

a money supply rule such that Mt = (1 + zt) Mt−1, where zt > −1. The

money supply expands if zt > 0, so that τt > 0. Conversely, the money supply

contracts if −1 < zt < 0, so that τt < 0. In this stationary environment,

the price level increases at the same rate as the money supply. Hence pt =

(1 + zt) pt−1.

All agents maximize the discounted sum of momentary utilities over an

infinite horizon. Agents who place a relatively high value on the services

of real money balances are referred to as type H, while those who place a

relatively low value on the services are referred to as type L. The preferences

of the type-i where i = H, L agents are represented by

U =
∞∑

t=0

βtui (ct, mt) i = H, L, (33)

where 0 < β < 1 is the agent’s subjective time rate of preference, c is the

quantity of the consumption good and mt ≡ Mt

pt
is the quantity of real money

balances. We assume ui
j > 0 and ui

jj < 0, i = L, H, j = m, c, where ui
j ≡ ∂ui

∂j

and ui
jj ≡ ∂2ui

∂j2 . There exists a satiation level of real money balances such that

uH
m

(
c, m∗H)

= uL
m

(
c, m∗L)

= 0. Further, we assume uH
m (ĉ, m̂) > uL

m (ĉ, m̂),

∀m̂ ≤ m∗H , uH
c (ĉ, m̂) = uL

c (ĉ, m̂) and ui
cm = 0 for i = L, H. In words, for

the same values of consumption and real balances, the type-H derives greater

marginal utility from the services associated with money than does a type-

L agent but there is no difference in the marginal utility of consumption.

Lastly, we assume the momentary utility is separable in consumption and

real money balances for both types of agents.
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There are two problems, one for each type of agent. Formally, the maxi-

mization problem for the type-i agents, i = L, H is represented by

∞∑
t=0

βtui
(
ci
t, m

i
t

)
s.t. f

(
ki

t−1

)
+ (1− δ) ki

t−1 +
mi

t−1

1 + (1 + zt)
+ τt ≥ ci

t + ki
t + mi

t, (34)

where (1 + zt) ≡ pt−pt−1

pt−1
and stands for the (net) inflation rate. Let ai

t ≡

f
(
ki

t−1

)
+ (1− δ) ki

t−1 +
mi

t−1

1+(1+zt)
+ τt, i = L, H. The problem for an agent of

type i can be written in recursive form. Bellman’s equation is:

V i (at) = max
{
ui (ct, mt) + βV i (at+1)

}
, i = H, L.

Since ki
t = ai

t − ci
t − mi

t, the unconstrained maximization problem can be

written as

V i (at) = max

 ui (ci
t, m

i
t)

+βV i
[
f (ai

t − ci
t −mi

t) + (1− δ) (ai
t − ci

t −mi
t) +

mi
t

1+(1+zt+1)
+ τt

]


We also impose the following transversality conditions:

lim
T→∞

βT ui
c

(
ci
T , mi

T

)
kT = lim

T→∞
βT ui

c

(
ci
T , mi

T

)
mT = 0. (35)

The first-order necessary conditions for agent i′s problem are:

ui
c

(
ci
t, m

i
t

)
− β

[
f ′

(
ki

t

)
+ (1− δ)

]
V i

a

(
ai

t+1

)
= 0, (36)

ui
m

(
ci
t, m

i
t

)
− β

[
f ′

(
ki

t

)
+ (1− δ)

]
V i

a

(
ai

t+1

)
+

βV i
a (at+1)

1 + (1 + zt+1)
= 0, (37)

and the envelope condition is

V i
a (at) = ui

c

(
ci
t, m

i
t

)
. (38)
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Update equation (38) by one period and substitute it into equations (36)

and (37), to get

ui
c

(
ci
t, m

i
t

)
− β

[
f ′

(
ki

t

)
+ (1− δ)

]
ui

c

(
ci
t+1, m

i
t+1

)
= 0, (39)

ui
m

(
ci
t, m

i
t

)
− β

[
f ′

(
ki

t

)
+ (1− δ)

]
ui

c

(
ci
t+1, m

i
t+1

)
+

βui
c

(
ci
t+1, m

i
t+1

)
1 + (1 + zt+1)

= 0.

(40)

We can solve the first-order necessary conditions specifically for a money

demand function. Let mdH (ωt) and mdL (ωt) represent the money demand

for type-H and type-L agents respectively. Here, ω is used to stand for the

variables that the agents will take as given; namely, the state variables, the

price level and the policy variables. Formally, ωt =
{
kH

t , kL
t , pt, τt, zt

}
.

The money market clearing condition can be represented as follows:

Mt = pt

[
µmdH (ωt) + (1− µ) mdL (ωt)

]
(41)

In steady state, consumption, capital, and real money balances are con-

stant over time so that ci
t = c̄i, ki

t = k̄i, mi
t = m̄i, for all t. In addition, the

government fixes the money supply growth rate such that zt = z for all t.

Hence, τt = τ . From equation (39), we have

ui
c

(
c̄i, m̄i

)
= β

[
f ′

(
k̄i

)
+ (1− δ)

]
ui

c

(
c̄i, m̄i

)
. (42)

It follows 1/β =
[
f ′

(
k̄i

)
+ (1− δ)

]
. The implication is that in the steady

state both type of agents hold the same amount of capital. To reduce nota-

tion, let k̄ ≡ k̄H = k̄L.

We now show the lump-sum transfers/taxes are given by τ = z
1+z

m̄. We

can express the government’s lump-sum taxes as a function of the money
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growth rate: τt = (1+zt)Mt−1−Mt−1

pt
= ztMt−1

pt
. After multiplying the right-

hand-side by pt−1

pt−1
, we get ztMt−1

1+(1+zt)
. In steady-state, this expression becomes

τ = z
1+(1+z)

m̄.

We now derive the relationship between the money growth rate and the

inflation rate. Update equation (41) by one period and rearrange to get,

pt+1

pt

=

Mt+1

µmdH(ω̄)+(1−µ)mdL(ω̄)

Mt

µmdH(ω̄)+(1−µ)mdL(ω̄)

= 1 + z.

This follows because the quantity of real money balances demanded by both

type-H and type-L agents are constant over time in steady-state. Hence, as

noted above, the rate of increase of the price level is the same as the rate of

increase in the money supply.

Next we combine equations (40), at the steady state, and (42), substitut-

ing for the inflation rate. This yields,

ui
m (c̄i, m̄i)

ui
c (c̄i, m̄i)

= 1− β

1 + z
. (43)

Thus, agents allocate their resources between consumption, real money bal-

ances, and capital so the marginal return from each is equalized.

With the agent’s budget constraint, it is possible to solve for steady-state

real balances and consumption. More specifically, the steady-state budget

constraint for a type-L agent can be written as

f
(
k̄
)

= δk̄ + c̄L +
z

1 + z
µ

(
m̄L − m̄H

)
. (44)

Solving for consumption, c̄L, yields

c̄L = f
(
k̄
)
− δk̄ − z

1 + z
µ

(
m̄L − m̄H

)
. (45)
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It is straightforward to see that consumption by type-L may be affected by

a change in the money growth rate. Formally,

∂c̄L

∂z
= − 1

(1 + z)2µ
(
m̄L − m̄H

)
− z

1 + z
µ

[
∂m̄L

∂z
− ∂m̄H

∂z

]
. (46)

Similar steps give the following expression for the consumption of type-H

agents, which is given by

c̄H = f
(
k̄
)
− δk̄ − z

1 + z
(1− µ)

(
m̄H − m̄L

)
. (47)

Note µc̄H + (1− µ)c̄L = f
(
k̄
)
− δk̄. It follows that a change in z will affect

consumption through its effect on

z

1 + z

(
m̄L − m̄H

)
.

This effect is typically not zero, so a change in the rate of growth of the

money supply creates a change in the amount of consumption enjoyed by

each type.

We now show type-L agents can benefit from an increase in the rate of

growth of the money supply. First we note,

Lemma 1 In steady state, real money balances are decreasing in the money

growth rate.

Proof. Equations (43) and (45) simultaneously determine consumption and

real money balances in steady state for type-H agents. Totally differentiate

both equations to obtain

uH
mm

uH
c

dmH − uH
mm

(uH
c )2dcH =

β

(1 + z)2dz
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and

dcH = −
(

z

1 + z

)
(1− µ) dmH − 1

(1 + z)2 (1− µ)
(
mH −mL

)
dz

After rearranging and writing in Ax = B form, it is straightforward to show

that dmH

dz
< 0. Since equation (47) has the same structure as equation (45),

it follows immediately that dmL

dz
< 0.

An increase in z away from the Friedman rule has two effects on the

welfare of agents in this economy. On the one hand it decreases real money

balances, as indicated in lemma 1. This, in turn, decreases the utility of

all agents. However, type-L agents will enjoy more consumption because

there is a transfer from type-H to type-L which is captured by the change in

z
1+z

(
m̄L − m̄H

)
. If this second effect dominates the first, then an increase in

z produces Pareto incomparable allocations. In that case, it is easy to find a

social welfare function that is not maximized at the Friedman rule.

To illustrate this can indeed happen we provide a simple example. Let µ =

.5 and assume both type have the same satiation level of money balances.7

The effect of a change in z on type L ’s utility is

uL
c

∂cL

∂z
+ uL

m

∂mL

∂z

1

2cL

[
m̄H − m̄L

(1 + z)2
+

z

1 + z

(
∂mH

∂z
− ∂mL

∂z

)]

+λL m∗ − m̄L

m∗m̄L

∂mH

∂z
. (48)

Lemma 2 Given our assumptions on preferences, type-H agents will hold

larger real money balances and consume less than type-L agents.

7This is the case, for example, if preferences are given by ui
(
c̄i, m̄i

)
= ln(c̄i) +

λi
(
ln(m̄i)− m̄i

m∗

)
, where m∗ is the satiation level of real balances which is the same for

both type. Thus, ui
c = 1/c̄i and ui

m = (λi/m∗m̄i)
(
m∗ − m̄i

)
.
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Proof. The marginal rate of substitution on the left-hand side of equation

(43) is equal to a constant on the right-hand side. Imagine that real balances

and consumption were the same for both types. With uH
m (c̄, m̄) > uL

m (c̄, m̄),

uH
c (c̄, m̄) = uL

c (c̄, m̄), the marginal rate of substitution is greater for the type-

H agents. Hence, equal values will not satisfy the agent’s efficiency condition.

Next, consider the case in which m̄H = m̄L, but c̄H 6= c̄L. Equations (45)

and (47), imply that consumption by type-H must equal consumption by

type-L. Hence, we cannot have m̄H = m̄Lwith c̄H 6= c̄L.Next, consider

c̄H = c̄L. For equation (43), the marginal utility of real balances must be

equal across types. By concavity of the utility function, m̄H > m̄L must

hold. Thus, we can rule out the possibility that type-H and type-L will

have equal real money balances or equal consumption levels. We also need

to rule out the possibility that m̄H < m̄L. Note that with m̄H < m̄L, then

uH
m

(
c̄H , m̄H

)
> uL

m

(
c̄L, m̄L

)
. Moreover, by equations (45) and (47), we know

that c̄H > c̄L. By concavity, it follows that uH
c

(
c̄H , m̄H

)
< uL

c

(
c̄L, m̄L

)
. It

follows immediately that
uH

m(c̄H ,m̄H)
uH

c (c̄H ,m̄H)
>

uL
m(c̄L,m̄L)

uL
c (c̄L,m̄L)

. So, equation (43) cannot

be simultaneously satisfied for both type-H and type-L agents.

We can prove the following proposition.

Proposition 4 Welfare of the type-L agents can increase for values of z >

β.

Proof. It is enough to show ∂mH

∂z
− ∂mL

∂z
> 0, since in that case equation (48)

is positive for small enough values of λL. We know both ∂mH

∂z
and ∂mL

∂z
are

negative. Also, the satiation level is the same for each type and it is achieved

whenever z = β. By lemma 2, m̄H > m̄L if z > β. Thus, in a neighborhood

of z = β, it must be the case that ∂mH

∂z
− ∂mL

∂z
> 0.
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Below we provides another example for the utility functions ui (c̄i, m̄i) =

ln(c̄i) + λi ln(m̄i). For that example, we explicitly derive the money demand

functions so it is possible to obtain an expression for ∂mH

∂z
and ∂mL

∂z
.

To summarize the argument, for each type the partial equilibrium effect of an

increase in z is to lower utility. However, there is also a general equilibrium

effect; a transfer from type H to type L that can more than compensate type

L for the partial effect when z is small.

The Friedman rule would be optimal if it were possible to achieve the

transfer from type H to type L through other, less distorting, means. With

type-specific lump-sum taxes and subsidies it is possible to implement a

transfer from type-H to type-L agents, without increasing z. Hence a neces-

sary condition for the Friedman rule to be suboptimal ex-post is that changes

in the rate of growth of the money supply have redistributive effects.

A final example for the MIUF economy is presented below. Assume the

utility functions are ui (c̄i, m̄i) = ln(c̄i)+λi ln(m̄i). In this case, ui
c = 1/c̄i and

ui
m = λi/m̄i. To find the expressions for m̄H and m̄L, we solve the following

set of equations:

c̄HλH =

(
1− β

1 + z

)
m̄H , c̄LλL =

(
1− β

1 + z

)
m̄L,

c̄H = Γ(k̄)− z

1 + z
µ

(
m̄H − m̄L

)
, c̄L = Γ(k̄) +

z

1 + z
µ

(
m̄H − m̄L

)
,

where Γ(k̄) = f(k̄)−δk̄. With a little algebra it is possible to get the following

expression

m̄i = Γ(k̄)(1 + z)
2µz + 1

λi (1 + z − β)

(1 + z − β)
[
µz

(
1

λH + 1
λL

)
+ (1 + z − β) 1

λHλL

] .
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From this it is easy to see m̄H > m̄L ⇔ λH > λL. Also,

m̄H

m̄L
=

2µz + 1
λL (1 + z − β)

2µz + 1
λH (1 + z − β)

.

Since ∂mi

∂z
< 0, if we show

∂ m̄H

m̄L

∂z
< 0,

it will imply 0 > ∂mH

∂z
> ∂mL

∂z
which in turn means ∂mH

∂z
− ∂mL

∂z
> 0. After

rearranging, we obtain

∂ m̄H

m̄L

∂z
= −2µ

1− β[
2µz + 1

λH (1 + z − β)
]2

λH − λL

λHλL
< 0.

Thus in this case also, for sufficiently small values of λL type L agents are

better off when z > β. Hence, a deviation from the Friedman rule will in-

crease the utility of type L.

B Proof of proposition 3

First, taking the derivative of equation (30) with respect to γ and setting it

equal to zero yields αρ 1
1+z

(
γ

1+z

)−ρ−
(

1−α
1−γ

)ρ

x1−ρ = 0. We can rearrange this

expression to get

γ =

[
1 +

1− α

α
((1 + z) x)

1−ρ
ρ

]
.

This is the choice of reserve-to-deposit ratio made by banks.
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Note M0

p1
= γω

1+z−zγ
. Substitute this into the central bank’s objective

function. Take the derivative with respect to z, obtaining(
γω

1 + z − zγ

)−ρ [
γ′ω (1 + z − zγ)− γω (1− γ − zγ′)

(1 + z − zγ)2

]
+

β

1− β

Ω1−ρΓ

1 + z

[
1 + z

Ω

∂Ω

∂z
+

1

1− ρ

1 + z

Γ

∂Γ

∂z

]
= 0

It can be verified that
1

1− ρ

1 + z

Γ

∂Γ

∂z
= −γ

and
1 + z

Ω

∂Ω

∂z
=

γ + (1 + z)zγ′

1 + z − γz
.

After rearranging, we get(
γω

1 + z − zγ

)−ρ

ω

[
γ′ (1 + z)− γ (1− γ)

(1 + z − zγ)2

]
= − β

1− β
Γ

(ω (1 + z))1−ρ

(1 + z − zγ)1−ρ

(1− γ) z

ρ (1 + z − zγ)

which simplifies to

γ1−ρ = − β

1− β
Γ (1 + z)1−ρ z

Note Γ = αρ
(

γ
1+z

)1−ρ
+ (1− α)ρ [(1− γ) x]1−ρ =

(
α
γ

)ρ [
γ

(1+z)1−ρ + 1−γ
x1−ρ

]
.

From the bank’s maximization we have, αρ 1
1+z

(
γ

1+z

)−ρ −
(

1−α
1−γ

)ρ

x1−ρ = 0,

so that

γ =
β

1− β
zαρ

which can be rewritten as

1 + z = 1 +
1− β

β

γ

αρ
.
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