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Truman Bewley

1. Introduction

My purpose is to show that underlying what seems to be Milton Friedman’s
vision of reality there is a rigorous model of competitive equilibrium which
can serve as an alternative to the Arrow-Debreu model. More precisely, a
careful analysis of Friedman’s (1969, pp. 1-50)f paper, ‘“The Optimum
Quantity of Money,’’ leads naturally to a model in which an equilibrium is a
stationary sequence of temporary equilibria and is also Pareto optimal. It is
Pareto optimal even though there is no forward trading and there are no
markets for contingent claim contracts.

I do not know whether Friedman would agree with my analysis, nor do 1
claim that he should agree. My aim is to synthesize his ideas and my own.

In ““The Optimum Quantity of Money,”’ Friedman argues that an econ-
omy cannot be economically efficient if any consumer economizes on cash
balances. Consumers should be constrained by their average flow of income,
but not by immediate shortages of cash. Wasteful economizing of cash would
be avoided if mcney earned a real rate of interest equal to consumers’ rate of
time preference. The quantity of money which would be held by society in
this situation is called the optimum quantity of money.

In explaining his ideas, Friedman uses a simple model, which he calls ‘‘a
hypothetical simple society.’’ This is a stationary society with a constant
population and with given tastes and resources. Consumers buy and sell
services. Money is the only durable object which may be exchanged. There is
no borrowing and lending. The nominal stock of money is fixed. Consumers
are subject to random shocks. The shocks are such that ‘‘mean values do not
(change).”’ 1 interpret this last assumption as meaning that the shocks form a
stationary stochastic process.

I define a mathematically precise version of Friedman’s model. I assume
that the model is of an exchange economy, with no production, although
Friedman is not clear on this point. The most important specification I make
is that consumers live forever. Here, I follow Friedman. He says that it is
“simplest to regard the members of this society as being immortal and un-
changeable.”” However, one could also interpret his model as an intergener-

tAuthor names and years refer to the works listed at the end of this book.
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ational mode! similar to Samuelson’s (1958) consumption loan model. The
random shocks in Friedman’s model are assumed to form a Markov chain.
Corresponding to each of the finitely many states of the chain, there is a
Walrasian pure trade economy. Each consumer has an endowment and a
concave utility function which is a function of the state. The endowments are
not storable, but must be traded and consumed in the period in which they
appear. Each consumer acts so as to maximize the expected value of the
discounted infinite sum of her or his utilities from consumption. Consumers
are assumed to have rational expectations in that they know the true proba-
bility distribution of future prices and of their own utility functions and en-
dowments. Money has price one in every period. It is not needed to pay for
purchases and does not enter anyone’s utility function. It is useful to con-
sumers only because it allows them to spend more than they earn sometimes.
The only intertemporal aspect of the model is that consumers must decide
each period how much money to save or dissave.

The assumption that consumers live forever involves a delicate question
of interpretation. What is involved is the interpretation of the time scale and
of the nature of the random events. My model is designed to represent what
one would see approximately in a grander model if one looked at how con-
sumers reacted to everyday fluctuations over a short period of time. I think
of random events as small events which tend to average out after a year or so.
Periods are days, and a day two years hence is nearly infinitely far away. The
infinite horizon should not be taken literally. It is simply a way to look at the
consumer’s life as a process rather than in totality.

My point of view seems to be roughly consistent with Friedman’s. He
specifically assumes that physical resources and the ‘‘state of the arts’’ are
fixed. These assumptions would not be appropriate if he visualized a period
of time spanning from five to ten years, say. However, my point of view is
not entirely consistent with what Friedman says. For he asserts that one
‘‘reason for holding money is as a reserve for future emergencies.”’
Emergencies are hardly the everyday events [ have in mind. I do not find it
appropriate to assume that ordinary consumers could ever hold sufficient
assets to be able to handle major emergencies, even if money did pay inter-
est. Most people are simply not that rich. The best they can do is buy
insurance against specific catastrophies. I also part company with Friedman
in not making money necessary for transactions. Friedman states that in his
model the two motives for holding money are self-insurance and to circum-
vent the double coincidence of wants needed for barter. However, introduc-
ing transaction costs, limited information about trading possibilities, and so
on, would only complicate my model. It would not change the conclusions.

I now return to what I do. I define a monetary equilibrium to be an infinite
sequence of random temporary equilibria such that the price of money is
always one and such that all prices are uniformly bounded away from zero
and infinity. By assuming that prices are bounded, I exclude the inflationary
equilibria which apparently may occur in almost any model with an infinite
horizon and rational expectations. (See, for example, Gale 1973, p. 24, and
Calvo 1978.)

The sequence of random price vectors in a monetary equilibrium do not
necessarily obey a stationary probability law. This fact is a weakness of the
concept of monetary equilibrium. For it makes little sense to assume rational
expectations if the probability distributions involved are not stationary. (Ob-
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servation does not reveal the distribution law of a nonstationary distribu-
tion.) I suspect that in a wide class of cases there exist no stationary mone-
tary equilibria. I hope to turn to this question in a later paper.

I make two strong assumptions about endowments and utility functions,
which guarantee that consumers need money in order to compensate for
fluctuations in their incomes and needs. I then prove that there exists a
monetary equilibrium provided that the interest earned on money is less than
every consumer’s rate of time preference. I also prove that in this case a
monetary equilibrium need not be Pareto optimal. More precisely, if each
consumer always consumes something, then the equilibrium is not Pareto
optimal. This is in accord with Friedman’s argument. All consumers
economize on money balances to some extent, since their rate of time prefer-
ence exceeds the rate of interest. Since consumers economize, the equilib-
rium cannot be Pareto optimal.

Consumers would not economize on money balances if the rate of interest
equaled their rate of time preference. They would accumulate money bal-
ances until they were fully self-insured. For self-insurance would be costless,
since the trade-off between present and future expenditure would be the
same when measured in terms of money or utility. So following Friedman, I
assume that all consumers have the same rate of time preference and that
money earns interest at this rate. I prove that in this case there exists no
monetary equilibrium, for almost every choice of consumers’ random en-
dowments. (4/most every means for all endowments except those belonging
to a set of Lebesque measure zero.) In proving this result, [ make a special
assumption which guarantees that the underlying stochastic fluctuation is
sufficiently random. The idea of the proof is that a monetary equilibrium can
exist only if the pattern of net expenditures of each consumer is periodic and
not random. Periodicity can be destroyed by small perturbations in endow-
ments. (Such periodicity is illustrated by the example given in section 13.)

If the pattern of net expenditures of some consumers were not periodic,
they would need an infinite quantity of money in order to insure themselves
completely. For they would have to protect themselves against an arbitrarily
long run of bad luck. In short, I prove that almost surely the optimum quan-
tity of money is infinite.

I express the infiniteness of the optimum quantity of money in another
way. I show that for almost every choice of consumers’ endowments the
following is true. The real stock of money in a monetary equilibrium may be
made arbitrarily large by paying interest on money at a rate which is suffi-
ciently close to the common rate of time preference.

One might interpret these results as a criticism of Friedman’s notion of an
optimum quantity of money: I make his model precise and reduce the idea to
an absurdity. However, this would not be a valid interpretation of nty werk.
It seems fair to say that Friedman’s primary interest was in economic policy.
From a practical point of view, the idea that the optimum quantity of money
is infinite is perhaps just silly. This idea becomes important only when one
tries to use a precise model of general equilibrium in order to express Fried-
man’s ideas.

It might seem that the infiniteness of the optimum quantity of money is
simply an artifact of my model. It is, of course, a consequence of the bizarre
assumption that consumers never die. However, the theoretical problem
cannot be resolved by assuming that consumers do die. For if consumers do
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die, the optimum rate of interest may not lead to a Pareto optimal allocation.
Imagine, for the moment, a version of my model with mortal consumers.
Suppose that each consumer lives many periods and is replaced at death by a
new consumer. Suppose also that there is no inheritance and that consumers
know when they are going to die. Then, consumers would spend all their
money during their last period of life. Also toward the end of their life, they
would tend to decumulate money. As a result, they might at some point be
caught without enough cash. Such illiquidity would cause economic ineffi-
ciency. Clearly, no matter what the rate of interest, there would exist a
monetary equilibrium and the real quantity of money would be finite. Hence,
given a social welfare function, there would exist an optimum real rate of
interest. However, there is no reason to believe that this rate of interest
would equal the common rate of time preference. Monetary equilibrium with
an optimum rate of interest would not necessarily give rise to a Pareto opti-
mal allocation. I do not pursue this line of thought in this paper.

I return now to the idea that the optimum quantity of money is infinite in
the model of this paper. I interpret the infiniteness of the optimum quantity of
money as expressing the idea that the optimum quantity of money in 2 more
realistic model would be so large that consumers would rarely be constrained
in their day-to-day lives by lack of cash. That is, they would be able to insure
themselves effectively against small fluctuations.

In the theory of the consumer, self-insurance is expressed as constancy of
the marginal utility of money. It stays constant over time, even as prices and
current needs and income fluctuate. I call this assumption the permanent
income hypothesis. This is a notion I have explained before, using a model of
a single consumer (see Bewley 1977d). Here I express the idea in a general
equilibrium framework and relate it to Friedman’s ideas on the optimum
quantity of money.

Ideally, 1 would like to have proved that if the rate of interest paid on
money were sufficiently close to the common rate of time preference, then in
a monetary equilibrium each consumer’s marginal utility of money would be
nearly constant. Unfortunately, I could not prove this, and it may not be
true. If a monetary equilibrium is not stationary, one can say little about
marginal utilities of money. As I have said, it is not clear whether stationary
monetary equilibria exist.

The permanent income hypothesis leads naturally to a new version of
equilibrium theory. In this theory, each consumer’s demand function is de-
fined by the assumption that the marginal utility of money is constant. Con-
sumers simply spend money on each good until the utility gained from con-
suming the quantity bought with the last dollar equals the fixed marginal
utility of money. Their budget constraint is that their long-run average ex-
penditures per period not exceed their long-run average income per period.
These long-run averages are computed using the true distribution of future
prices, for consumers are assumed to know this distribution. Consumers
adjust their marginal utility of money so as to bring their average ex-
penditures into line with their average income.

Assume that each consumer’s demand is defined in this fashion. [ define a
stationary equilibrium to be a stationary distribution of prices such that
aggregate excess demand is always zero. I prove that in the model of this
paper a stationary equilibrium exists and is Pareto optimal. (I have discussed
stationary equilibrium in three unpublished papers: Bewley 1977a, b, c.)
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Stationary equilibrium is a way of describing the world when the quantity
of money is optimal. This might seem confusing, for money plays no role in
stationary equilibrium. But since the optimum quantity of money is infinite, it
cannot play a role. In fact, the absence of money is an advantage from my
point of view, for I seek a simple model of general equilibrium.

The fact that money disappears from the model expresses Hahn’s (1971a)
criticism of Friedman’s theory of the optimum quantity of money. Hahn
expresses his main criticism this way: *‘The necessary conditions for
Pareto-efficiency in a world of uncertainty with inter-temporal choice will in
general be fulfilled by a market economy only if money plays no role.’” Hahn
elaborates this point in three other papers (see Hahn 1971b, 1973a, b). An
allocation is Pareto optimal only if it can be generated by equilibrium in
Arrow-Debreu markets for forward and contingent claims. But in such an
equilibrium, money plays no role. Hence, money is ‘‘inessential’’ in any
system which generates Pareto optimal allocations.

In order to reconcile Hahn's and Friedman’s ideas, one may think of
Friedman’s optimum quantity of money as optimal only in some asymptotic
or approximate sense. One can think of money as present but nearly irrele-
vant from the point of view of equilibrium theory. Since cash rarely con-
strains consumers, it may be ignored.

This point of view also helps to reconcile Hahn’s views with those of
Starrett (1973). Starrett argued that Pareto inefficiency arises in Hahn’s
model of equilibrium with transaction costs only because of the lack of an
intertemporal unit of account. Starrett is careful to point out that this unit of
account would not be real money. In his model, consumers have unlimited
ability to borrow and lend the unit of account. The only restriction is that
debt be repaid in the last period of life. The point of my work is that in a
model much like Hahn’s, real money resembles Starrett’s intertemporal unit
of account asymptotically as the rate of interest approaches the common rate
of time preference.

The concept of stationary equilibrium involves many notions that are
commonly associated with modern politically conservative economic think-
ing. Not only is stationary equilibrium related to Friedman’s optimum quan-
tity of money and to his permanent income hypothesis, but it is based on the
idea of rational expectations. I view stationary equilibrium as expressing
rigorously the conservative vision of Walrasian equilibrium.

The notion of stationary equilibrium can serve as an alternative to the
Arrow-Debreu model. By an alternative, I mean that each model is appro-
priate in certain settings. (The Arrow-Debreu model is defined in Arrow 1964
and in Debreu 1959, chapter 7.) Stationary equilibrium has the obvious ad-
vantage that trading takes place all the time, not exclusively in some ethereal
initial period. However, in my opinion, stationary equilibrium can be thought
of as applying only in short-run contexts where random shocks are never
severe. If the context is not the short run, then stationarity does not make
sense. The world changes over long periods of time. If random shocks are
severe, then external insurance is needed. External insurance is formalized
by contingent claim contracts.

The notion of stationary equilibrium is intriguing, in spite of its lim-
itations. For instance, it provides a partial solution to a problem posed by
Arrow (1974). The problem is to explain why we do not in reality observe
complete markets for contingent claims. I intend to develop this point in a
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later paper.

Turning to another matter, 1 give a new solution in this paper to a problem
posed by Hahn (1965). The problem is how to prove the existence of a
competitive equilibrium in which money has a positive price. My monetary
equilibrium is such an equilibrium. The device 1 use to give money value is
the infinite horizon (together with the need for insurance). This is, of course,
an artificial device, though perhaps more elegant than others that have ap-
peared in the literature.

I wish to emphasize that I do not view this existence result as in any way
explaining why money exists, nor as providing a basis for monetary theory.
The existence result is simply a convenient way to describe precisely an
aspect of reality which interests me here. Much of what is monetary about
money is excluded from my model.

The following three sections contain formal definitions, assumptions, and
statements of results. In section 5, I attempt to relate my work to the vast
literature on the optimal quantity of money and on the link between general
equilibrium and monetary theory. The body of the paper gives formal proofs.
The basic idea of the proof that the optimum quantity of money is infinite
may be found in Schechtman 1976. The last section contains an example.

2. Definitions, Notation, and the Model

2.1. Notation

RE denotes L-dimensional Euclidean space. Let x and y belong to RL The
expression x Zy means x, Z y,, forall k; x > ymeansx Zyandx #y; x >>y
means x; > ¥y, for all k. R; denotes {x € R’ | x 20}, and int R% denotes {x €
RE|x>>0}. '

Let f:U — (—«, ) be twice differentiable, where U is an open subset of
RL Df(x) denotes the vector of first derivatives of fat x. D?*f(x) denotes the
matrix of second-order partial derivatives at x.

Prob [4 | B] denotes the conditional probability of A given B, where 4 and
B are formulas describing events. Prob [4] denotes the probability of 4.
E(x | B) denotes the expectation of the random variable x given the event B.
Ex denotes the expectation of the random variable x.

2.2. The Underlying Stochastic Process

Exogenous fluctuations are governed by a stochastic process {s, };=—«. The
random variables s, take their values in a set A. 4 is called the set of states of
the environment. 1 assume that {s,} is a Markov chain. That is, {s,} is a
Markov process with stationary probabilities, and A is a finite set. If 2 and b
belong to A, then P,, denotes the transition probability, Prob [s,4; = b |s, =
al, for any n. Similarly, P = Prob [s,.x = b|s, = a], for k= 1. I also assume
that {s,} is ergodic with no transient states. That is, there is a positive integer
n such that P%’ > 0, for all ¢ and b.

Since {s,} is ergodic, there exists a unique stationary probability distribu-
tion on A, (7,)geq . 7 satisfies m, = ey 7o Pyy, forall b € 4. Since {s,} has no
transient states, 7, > Oforalla € 4.

I will always assume that s, is distributed according to =. That is, the
probability distribution of (s, §2, ...) is determined by the unique stationary
distribution for the process {s, }.

A history for the process {s,} from time n to time n + m is a finite
SequUence dy, dui1, ---, duim Such that a, € 4, for all k, and Prob [s, = a,, ...,
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Sptm = @n+m] > 0. Histories will be denoted by ay, ..., @yim- A history follow-
ing a, is a finite sequence a,+1, .-, dpsm such that a,, ansy, -.-» Gnim forms a
history.

2.3. The Economy
The economy is a pure trade economy with no production. Initial endow-
ments and utility functions fluctuate in response to fluctuationsin s, .

There are L commodities and I consumers, where L and I are positive
integers. The endowment of consumer i is determined by w; : 4 — R%, fori =
1, ..., I. w; (s,) is the endowment vector of the consumer in period #. The
utility function of consumer i is u; : Ry X A — (—», ©). Consumer i’s utility
function at time nis 1; (-, s,) : RY — (—, »). I assume that for all i, u; (-, a) is
everywhere twice differentiable. Also, Di; (x,a) >> 0 and D*U,; (x,a) is
negative definite, for all x. In other words, u; (-, a) is differentiably strictly
monotone and strictly concave.

A consumption plan for a consumer is of the form x = [x, (a,...,a:)],
where n = 1,2,... and ay,...,a, varies over histories and where each x, (a;,...,
a,) belongs to R%. The consumer’s consumption bundle at time » is x, (sy,...,
Sn)-

Consumer i discounts utility at the rate §;, where 0 < §; = 1. The con-
sumer’s rate of time preference is 87 — 1.

The expected value of the utility to consumer i of a consumption plan x is
U; (x) = E {3720 81 u; [x, (81, .-, S2)> Sz]}, where E denotes the expected
value operator. U; (x) is well defined as long as §; < 1 and the x, (sy, ..., 5,)
are uniformly bounded.

An allocation is a set of consumption plans (x;) = (xy, ..., x;), where x; is
the consumption plan of consumer . The allocation is said to be feasible if
St [xim (ays ..., @y) — @; (a,)] = 0, for all n and all histories a, -.., a,-

If 8; < 1, for all i, then a feasible allocation (x;) is said to be Pareto optimal
if there exists no other feasible allocation (¥;) such that U; () 2 U,; (x;), for
all i and U, (X;) > U; (x;), for some i. This definition makes no sense if §; = 1,
for some i{. Suppose that §; = 1, for all i. Then the feasible allocation (x;) is
said to be Pareto optimal if there exists no feasible allocation (X;) such that

N N
M E{ 2t [Xn (51, ---,sn),sn]} = E{ﬂgluz [xin (51, --.,sn),sn]}
for all i and N; with inequality for some iand N.

2.4. Monetary Equilibrium
A price system is of the form p = [p, (a,, ..., a,)], where the p, (a,, ..., a,)
belong to R%. The price vector at time n is p, (a,, ..., a,).

Let » = 0 denote the nominal interest rate paid on money. Interest pay-
ments are financed by a lump-sum tax. Let 7; be the tax payments paid by
consumer ; each period. M;, (p, x; ay, ..., a,) denotes the money holdings of
consumer i at the end of period n, given the price system p, the consumption
program x, and the history ay, ..., a,. My, (p, x; a1, ..., ay) is defined induc-
tively as follows.

2) Mo (p,x) = My, is given, and

M (px; ay, oovs @) = (1 + 1) Minoy (PoX5 Q15 ooes Gny)
+pa(ay, ..., ay) (o (@r) — X (ay, ..., a)]l—m
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for all » = 1 and for all histories ay, ..., a,.

1 will assume that %;_, M;, = 1. In order to assure that the nominal supply
of money never changes, I assume that 31_, 7, = r.

The budget set of consumer i, given a price system p, is 8; (p) = {x|xis a
consumption program such that M;, (p,x; a,, ..., a,) = 0, for all » and for all
histories a;, ..., @, }.

In order to guarantee that B8; (p) be nonempty, 1 assume that 7; = rM;,, for
all i. If 7; exceeded rM;,, the consumer might have no way to avoid being
driven to bankruptcy by tax payments.

If §; < 1, then consumer {’s maximization problem is the following:

3) max (E{ § S  u; [y (S1y ees Sn)s sn]}

n=1

xE€EB (P))-

& (p) denotes the solution to this problem, if it exists. & (p) does indeed
exist, provided that the components of p are uniformly bounded away from
zero and infinity.It is not necessary to prove this fact for the purposes of this
paper. The strict concavity of the functions u; (-, a) guarantees that the
solution of (3) is unique.

If 8; =1, then (3) makes no sense. However, one may still obtain a plausi-
ble definition of & (p), though & (p) is no longer necessarily unique. I will
return to this matter in a subsection below.

A monetary equilibrium is a vector [p, (x;)1, where p is a price system, (x;)
is an allocation, and both satisfy the following conditions:

4 (x;) is a feasible allocation.

(5 The components of p, (ay, ..., a,) are uniformly bounded away
from zero and infinity as nand ay, ..., a, vary.

(6) x; € & (p), foralli.

Remark. Given a monetary equilibrium [p,(x;)] with positive interest rate r, it
is possible to define an equivalent deflationary equilibrium [7, (x;)] with no
interest payments. One simply deflates the taxes and prices at rate r. p is
defined by p, (ay, ..., a,) = (1+r) ™ p, (a,, ..., a,). The tax payments of
consumer i in period n are T, = (1+r)™*!'7;. The consumer’s holdings of
money at the beginning of period # turn out to be M;, (P,x;; 515 ..., Sz) = (1+
r)_n+l Min (P,xi§ Sty eees sn)'

2.5. Marginal Utilities of Money When 8; <1

There are marginal utilities of money associated with any monetary equilib-
rium [p, (x;)], provided that r = 87! — 1. | will always assume that r = §7* — 1.
The marginal utilities of money are simply the multipliers associated with the
consumers’ budget constraints. The marginal utility of money of consumer i
is an infinite vector A\; = [Ny, (ay, --., @,)]1, where each \;, (a,, ..., a,) is a
positive number. The marginal utility of money must be distinguished from
the marginal utility of expenditure. The vector of marginal utilities of ex-
penditure associated with x; and p is always denoted by o4 = [, (ay, ..., au)],
where again each oy, (a,, ..., a,) is a positive number. o, (ai, ..., a,) Iis
defined as follows:
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) oy, (ay, ..., ay) is the smallest number ¢ such that

aut [xin (al’ ceey an),au] < ¢
= [

6zk

Dnrrk (alr (XS an)

for all k; with equality if x;.x (ay, ..., a.) > 0.

In this formula, du; (x,a) / 8z, denotes the partial derivative of u; (x,a) with
respect to the k" component of x.

M\ and o; satisfy the following conditions. These apply for all i, n, and
Ay eeey Ay

(8) )\in (alv sy an)= max {az'n (ah LR ] an),
8; (141 E [hins1 (a1 -ovs Gny Spyr) I §p = an]}-
9 Mn (@15 ooy @7) > 8 (147 E Nins1 (@15 ooos Gy Suir) | Sn = @l

only if My, (p.xi3ay, ..., an) =0.

(10) Ain (aly sees an) > oy (ah cees Q) only ifxin (aly e @) = 0.

The marginal utilities of money are uniformly bounded above and away
from zero. Before stating this fact, I define some key bounds.

(1y Let @ € RE be such that 35, w; (a) << @, foralla €A4.
There exist g and g such that 0 << g << Di; (x,a) << g,
for alla € A and for all x € Rk such that x = &.

The existence of g and g follows from the strict monotonicity of the functions
u; (-, a) and from the continuity of their derivatives. By (5), there exist
vectors p and p in R% such that 0 << p = p, (a,, ..., a,) = p, for all n and
aj, ..., a,. The bounds on the marginal utilities of money are as follows:

(12) min 5! g = i (@4, ..., @) = max pilgg, foralli, n,and ay, ..., a,.
k k=

I now sketch the proof that if §; < 1, then marginal utilities of money exist
and satisfy (8)—(10) and (12). I here use the methods of Schechtman 1976 or of
my own paper (Bewley 1977d). Let AY = [\, (a,, ..., a,)] be the vector of
marginal utilities of money associated with the solution of the problem

N
max (E{ 3 8V [xn (Syy oees Su)s s,,]} l X EB; (p))
n=1
This problem clearly has a solution, and the A satisfy (8)-(10) and (12). Itis
not hard to show that the numbers A%(a,, ..., a,) are nondecreasing in N.
(See Schechtman 1976, p. 224, Theorem 1.7, or Bewley 1977d, p. 270,
Lemma 5.1.) The AY, (ay, ..., a,) are uniformly bounded above. This follows
from the following facts: r = §;! — 1; prices are uniformly bounded away from
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zero and bounded above (5); and utility functions are concave and have
continuous finite derivatives. \;, (ay, ..., ;) is simply limy_. A, (a,, ..., a,).
Passage to the limit in (8)-(10) and (12) proves that A; satisfies the same
conditions.

2.6. Demand When §; = 1

I now turn to the question of the definition of demand when §; = 1 (and r = 0).
A program x belongs to & (p) if x € B; (p) and if there exists a vector of
marginal utilities of money, \; = [\, (a,, ..., a,)], such that x, A;, and p satisfy
(8)—(10), with §; (14+r) = 1, and also satisfy (13) and (14) below.

(13) There exists M> 0 such that M;, (p,x; @i, ..., a,) = M, for all n
and ay, ..., Q.

(14) There exist positive numbers A and A such that A =\, (ay, ..., @)
=, forallnanda,, ..., a,.

Programs in & (p) are optimal in a long-run average sense. In fact, if ¥ =
[X, (@i ..., an)] € & (p), then X solves the problem

(15) maX<1iglian“E{ s u,-[x,.(sl,...,sn),sn]} x € B (p))-
—>x n=1
First observe that
max (liminf N~ E{ 3wl (o1 s} | 50 €80 0)
300 n=1

N
éligln inf N-! max (E{ S oux, (se,-.es s,.),s,,]}
—-® n=1

x; €6 (P)) .
It follows that it is sufficient to prove that there is a constant B such that

(16) max (E{ él ;s [y (51, ...,sn),sn]}

xEJ (p))

N
éE{ 3 u; (%, (sq, ...,sn),sn]} + B,forall N.
n=1

I now prove (16). Let A; be the vector of marginal utilities of money
associated with X. Clearly, X solves the problem

max (E{ "%1 U; [xn (s17 aeey Sn)7 Sn]

+ Niw (815 oo5 S8) Min (D, X5 54,5 - SN)} I XERB (P))

For this is a finite dimensional maximization problem with a concave objec-
tive function. Hence, it is sufficient to satisfy the first-order conditions. But
these conditions are given by (8)-(10). .

By (13) and (14), E[Mn(sq, ..., S\ )Mu(D,%:84, ... sy)1 =X M. It follows that
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(16) is true with B = X M. This completes the proof that ¥ solves (15).

2.7. Stationary Equilibrium

Stationary equilibrium is the concept of equilibrium appropriate when the
rate of interest equals the common rate of time preference. It is defined as
follows.

A stationary consumption plan is a function x : A — R%. A stationary
allocation is of the form (x;) = (x,,...,x;), where x; is a stationary consump-
tion plan. The bundle allocated to consumer ; in period n is x;(s,). The
allocation (x;) is feasible if 5., [x)(a) — w;(a)] = 0,foralla €A4.

To every stationary consumption plan x, there corresponds the infinite

consumption program £ = £, (a,,...,a,), defined by £, (ay,...,a;) = x(a;). A
feasible stationary allocation (x;) is said to be Pareto optimal if the corre-
sponding allocation (£;) is Pareto optimal.
Remark. One can also conceive of stationary consumption plans and prices
which would be functions of the infinite history (... ,a,-,,a;) and not just of
the current state a,. A stationary monetary equilibrium, if it existed, would
be stationary in this sense, for the history would determine the current distri-
bution of money balances.

A stationary price system with deflation rate r is of the form (p,r), where r
= 0 is the deflation rate and p : 4 — RY is such that p(a) > 0, for all a. The
interpretation is that the price vector at time n is (1+r)™**+1p(s,).

Givenp : A — Rk, the stationary budget set of consumeriis 8;(p) = {x: 4
— RY | Z4eq mo pla) - [x(a) — w(a)] = 0}, where r is the stationary distribu-
tiononA4.

The stationary expected utility of consumer i is Uy(x) = 3.4 moulx(a),al,
where x is a stationary consumption program.

The stationary demand for consumer i, given a stationary price system
(p,r), is the unique stationary consumption plan &(p) which solves the prob-
lem max{U(x) | x € B«(p)}.

If the deflation rate equals the consumer’s rate of time preference, then
&(p) describes an infinite consumption program which is optimal given a
long-run budget constraint. To be precise, suppose that the deflation rate r is
positive. Then the infinite consumption program £,(p) corresponding to &(p)
solves the problem

max (E{nﬁ:)l( 14+1) 7 [ x, (g, . s ,s,,),s,,]}

x is an infinite consumption program which satisfies
E{ 20071005 - DG -89 — (51} 50).
Now suppose that there is no deflation. Then &(p) solves the problem

N
max (li{g@f N“E{nélui[xn(sl, ... ,sn),sn]}

x is an infinite consumption program which satisfies
N
linin N1E{ Z,p(s0) - L 150) = a(s)1} 5 0).

I may now define stationary equilibrium. A stationary equilibrium with
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deflation rate r is a vector [p,r,(x;)], where (p,r) is a stationary price system
with deflation rate r, (x;) is a feasible stationary allocation, and x; = &(p), for
all i. The rate of deflation r plays no role in the conditions defining a station-
ary equilibrium. [t becomes important only when one interprets the
equilibrium.

One may think of consumers in a stationary equilibrium as keeping the
marginal utility of money constant. The marginal utility of money of con-
sumer { is the Lagrange multiplier associated with the constraint 3.,
mop(a) - x(a) = S.eq mop(a) w(a). It is, of course, simply a positive number,
A;. Together with p, A; determines consumer i’s demand. That is, if &(p) =
[x:(a)lecs, then for each a, x;(a) is determined by the following set of
inequalities:

dui[x(a),al

= Mpi(a), for all k; with equality if x;.(a) > 0.
e :

3. Assumptions

Here I collect the assumptions | use. Many have already been mentioned in
the previous section.

ASSUMPTION 1. {s,,} is a stationary Markov chain.

The realization of the random variables s, belongs to the finite set 4.

ASSUMPTION 2. {s, } is ergodic and has no transient states.
7 = (7,)eea denotes the unique stationary distribution of {s,}. m, > 0, for all
a€A.

w; : A — R% describes the initial endowment of consumer i. I make use of
the following conditions on the ;.

ASSUMPTION 3. For every i, w(a) # 0, for somea €EA.
ASSUMPTION 4. Foreverya €A, S, wa) ZI(1,...,1).

The validity of this assumption depends on the choice of the units of
commodities. In more general terms, | have simply assumed that 3i_; w;,(a)
>> (, for all a.

u; : Rt X A — (—»,) is the utility function of consumer /. I make the
following regularity assumptions about the ;.

ASSUMPTION 5. For all i and a, u(-,a) is everywhere twice continuously
differentiable.
ASSUMPTION 6. For every i and a and for every x € R:, DPuy(x,a) is negative
definite and Duy(x,a) >> 0.

The next assumption has to do with initial money balances and the tax
system.
ASSUMPTION 7. 3i_, My, = I, and for all i, My, > 0 and 7; = r My, where r is
the interest rate on money.

The next two assumptions guarantee that a monetary equilibrium exists.
They are very strong. The y appearing in these assumptions is somesmall
positive constant.

ASSUMPTION 8. For every a €A, Prob [wy(sz) =y, fork=1,...,L | s; = al
>0, where 0 <y <1.
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Letgand gbeasin (11).

ASSUMPTION 9. There exists Q € RE such that Q >> 0 and the following are
true. For all i and a, Du(x,a) >> Q, whenever x is such that x,, = y g1 2%,
g, for all k. Also, for every k, a, and i, duy(x,a)/0x, << Qp, if x € RE is such
thatx=(1,...,1)andx; = 1.

The validity of this assumption depends, of course, on the choice of scale for
the utility functions.

The next assumption expresses the idea that the Markov process {s,} is
sufficiently random.

ASSUMPTION 10. There exists a state a € A for which there are at least three
distinct histories which begin and end with a. Each of these histories con-
tains a state which is distinct from a and does not appear in either of the
other two histories.

4. Theorems

In all the following theorems, I assume that Assumptions 1-7 apply. As-
sumptions 8 and 9 are used only in Theorems 1 and 4. Assumption 10 is used
only in Theorems 3 and 4.

THEOREM 1. Assume that Assumptions 8 and 9 apply. If &; < (1+r)7L for all i,
then there exists a monetary equilibrium provided that min; 8; is sufficiently
large.

THEOREM 2. Suppose that 8; < (1+r)7%, for all i. Let [p,(x;)] be a monetary
equilibrium such that xi,(ay,...,a,) # 0, for all i, n, and a,, . ..,a,. Then the
allocation (x;) is not Pareto optimal.

In the following theorem,  denotes the space {(wi,...,0) | o : 4 — int
RE, for all i}. If w = (w;) € Q, then § () denotes the economy with utility
functions u,,...,u; and with initial endowment functions w,,...,w»;. Notice
that O may be viewed as a subset of RE!41, where |A4] is the number of points
in A. The statement for almost every o € Q means for all w except for o
belonging to a subset of Q) of Lebesque measure zero.

Recall that P, denotes the transition probability from a to bin A.

THEOREM 3. Assume that I Z 2 and that Assumption 10 applies. If &; =
(1+r)7 for all i, then & (w) has no monetary equilibrium, for almost every o
€0

THEOREM 4. Assume that I Z 2 and that Assumptions 8-10 apply. Assume
also that 8; = (1+r)7% for all i, where r > 0. Then for almost every o € Q the
Jollowing is true. Let r, be such that 0 = r, <r, wherek =1,2,.... For each
k, let [p¥,(xF)] be a monetary equilibrium for & (o) with interest rate r.. If
limg oo 1 = r, then limy _, o pE(ay, .. . ,a,) = 0, uniformly with respect to n and
ag,...,qn.

THEOREM 5. If 8; = 8 = 1, for all i, then there exists a stationary equilibrium
with deflation rate 8 —1. Such an equilibrium is Pareto optimal.

An example given in section 13 illustrates the need for the special as-
sumption in Theorem 2 and for Assumption 10 in Theorems 3 and 4.

5. Review of the Literature
I review briefly the literature on the optimal quantity of money and on the
relation of monetary theory to equilibrium theory. Not all of this literature is
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directly related to my own work. However, my own work falls in this general
area. Since the literature is large and confusingly diverse, it seems worth-
while to review it. I first deal with the literature on the optimum quantity of
money.

It seems to be impossible to attribute the idea of the optimum quantity of
money to any one author. It must have been in the air for some time. In a
paper of 1953 (pp. 251-62), Friedman discussed the fact that inflation leads
consumers to economize unnecessarily on cash balances. This idea was for-
malized by Bailey in a paper appearing in 1956. In the same year the idea was
empirically tested by Cagan. In a paper of 1963 (p. 535), Samuelson men-
tioned the idea that the real rate of interest on money should be positive, at
least in idealized models. In a paper of 1963 (p. 113), Harry Johnson re-
marked that money should earn the same real rate of interest as other assets.
Samuelson developed his idea somewhat in two papers of 1968 and 1969.
Tobin discussed the same idea in a paper published in 1968 (p. 846). Both
Samuelson and Tobin argued that from the point of view of efficiency, eco-
nomic agents should be saturated with money balances; hence, money should
bear a real rate of return high enough to remove all incentive to economize on
it. This idea was discussed at length by Friedman in ‘“The Optimum Quantity
of Money,”” which appeared in 1969 (pp. 1-50).

There was a long debate about whether money should bear interest in
reality. Friedman (1969) advanced this idea. Harry Johnson (1970), Tsiang
(1969), Clower (1968, 1970), and Phelps (1972, pp. 201-220; 1973) made im-
portant contributions to the debate. Johnson was mainly concerned about
substitution between money and interest-bearing assets. Since money does
not bear interest, consumers economize on it in order to buy other assets.
Tsiang expressed the view that if money bore interest at a rate equal to the
general rate of return on capital, then it would tend to displace all other
assets. Clower’s main point was that one cannot make practical recom-
mendations about monetary policy in terms of models which do not capture
those aspects of reality which make money useful. Phelps related the ques-
tion of the optimal level of inflation (or deflation) to the theory of optimal
taxation. He pointed out that inflation is a form of tax, so that there is a
trade-off between deadweight losses caused by inflation and those caused by
other taxes.

The issues raised by Johnson and Tsiang cannot be discussed in terms of
my model, since money is the only asset in my model. Nor can I discuss the
theory of optimal taxation, for I permit lump-sum taxes. My model is, of
course, open to Clower’s criticism. There are no transaction costs, no infor-
mation problems, and so on which could explain why money exists. But I do
not make practical recommendations either.

I note in passing that in Inflation Policy and Unemployment Theory
Phelps mentioned the idea that consumers would have an insatiable demand
for liquidity if the real rate of interest equaled the rate of time preference (see
Phelps 1972, pp. 181-82). This is, of course, one of the main ideas of this
paper.

The theory of the optimal quantity of money is related to the literature on
the optimal rate of growth of the money supply from the point of view of
growth theory. This is a vast literature. See, for example, Johnson 1967,
Levhari and Patinkin 1968, Marty 1968, Sidrauski 1967, and Tobin 1956,
1965. This literature is surveyed in Stein 1970. One of the main preoccupa-
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tions of the literature is the effect of the real rate of interest on saving and
investment. Most of the discussion is in terms of Keynesian and Solow
growth models.

A revival of this literature was initiated recently by Brock (1974, 1975).
He formulates the problem in terms of a mathematically rigorous, infinite-
horizon growth model. In it, all consumers are identical and live forever.
Utility is additively separable with respect to time. There is no uncertainty.
Consumers have perfect foresight and maximize the discounted infinite sum
of present and future utilities. The utility of each period depends on con-
sumption, leisure, and real balances.

Brock’s model of a single consumer is similar to my own, except that
Brock puts money directly in the utility function. (In my model, uncertainty
and the heterogeneity of consumers are what give money value.) The ques-
tions Brock asks are different from my own and also from those posed in the
earlier literature on growth and money. His primary concern is with unique-
ness of the perfect-foresight equilibrium. He also studies the response of the
model to anticipated future changes in the nominal supply of money. He
discusses the optimal quantity of money and proves that it is infinite if the
marginal utility of money is not eventually zero. (The marginal utility of
money in Brock’s model is measured directly by the utility function.)

Calvo (1979) studies the uniqueness of equilibrium in models similar to
that of Brock. Calvo allows money to appear in the production function.

I now turn to the enormous literature on models which describe in detail
how and why people use money and why it is socially useful to do so.

The early papers of Baumol (1952) and Tobin (1956) use an inventory-
theoretic model to explain why people hold money rather than interest-
bearing assets. Money is the sole means of payment, and each purchase or
sale of an interest-bearing asset involves afixed transaction cost.

Clower and Howitt (1978) analyze an inventory-theoretic model of con-
sumer behavior in a model with both transaction costs and inventories of
goods. They find that because of delicate questions of timing, average cash
balances can depend in a discontinuous way on the parameters of the con-
sumer’s problem.

Feige and Parkin (1971), Niehans (1975), and Perlman (1971) also intro-
duce commodity inventories into the story told by Baumol and Tobin. They
discuss the optimal quantity of money in a semiformal general equilibrium
framework. That is, they give general equilibrium interpretations of the
first-order conditions of consumer equilibrium, but they do not prove that
equilibria exist. The work of Feige and Parkin and of Perlman has led to
some controversy. See Feige, Parkin, Avery, and Stones 1973, Perlman
1973, and Russell 1974.

The model of consumer behavior most closely related to my own is that of
Foley and Hellwig (1975). In their model, as in mine, money is needed only
for self-insurance. Consumers live forever and maximize the expected value
of a discounted infinite stream of utilities. Utility in each period depends on
consumption and leisure. Consumers fluctuate between being employed and
being involuntarily unemployed. They use money to compensate for the re-
sulting fluctuations in income. The model is of partial equilibrium in that it is
a model of a single consumer. Foley and Hellwig demonstrate that the prob-
ability distribution of money holdings converges to a long-run stationary
distribution.
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There is a large literature which analyzes in detail the role of money in
transactions. Authors in this area try to show why exchange involving money
is simpler and cheaper than barter. They also look for the essential difference
between money and other goods. Works in this area include Brunner and
Meltzer 1971, Niehans 1969, 1971, Ostroy 1973, Ostroy and Starr 1974, Sav-
ing 1971, and Starr 1972.

The papers just referred to explain why individuals would find money
convenient if others were willing to accept it. They also explain why money
is socially useful. But they do not describe a rigorous model in which it would
be completely rational for every individual to accept and use money. The
problem is that if one thinks in terms of a finite-horizon model, money would
have no value in the last period. By backward induction, it would have no
value in any period. In order to bypass this problem, one must think of
equilibrium as an ongoing process, as I do in this paper. Shubik does so as
well in his game-theoretic approach to monetary theory. (See, for instance,
his paper in this volume.) Robert Jones (1976) treats equilibrium as an ongo-
ing process in a model which includes costs of finding a trading partner. His
equilibria may be interpreted as Nash equilibria. He also describes a process
which leads in an evolutionary way to the adoption of a medium of exchange.

Samuelson’s 1958 consumption loan model is another example of a model
of an ongoing process in which money has value. This model has been much
studied. See, for instance, Gale 1973, Grandmont and Laroque 1973, and the
papers in this volume by Cass, Okuno, and Zilcha and Wallace.

There have been many rigorous, finite-horizon general equilibrium models
in which money is given value by imposing somewhat artificial terminal con-
ditions. These works include Hahn 1973b, Heller 1974, Heller and Starr
1976, Kurz 1974b, Sontheimer 1972, and Starr 1974. All of these papers,
except that of Starr, include transaction costs. Kurz's model allows barter
and monetary trade to occur simultaneously with distinct transaction costs.

Another approach to giving money value is simply to assume that con-
sumers believe it will have value in the terminal period. That is, the value of
money is a consequence of consumer expectations. This is the approach
taken by Grandmont (1974). Drandrakis (1966) seems to have had the same
approach in mind in his early work on temporary equilibrium theory. Grand-
mont proves the existence of a temporary equilibrium with a positive price
for money in a two-period model in which consumers believe that the real
value of money in the second period is bounded away from zero. These
beliefs are not necessarily rational. In my model, money-also has value only
because consumers believe it will be valuabie in the future. Because I use an
infinite horizon, I am able to prove that these beliefs are rational.

Yet another way to obtain equilibrium with a positive price for money is to
use the Clower constraint in an infinite-horizon model with rational expecta-
tions. The Clower constraint is the requirement that goods can be exchanged
only for money. It was proposed by Clower in 1967. The Clower constraint
serves to make money useful. The infinite horizon does away with the prob-
lem of the value of money in the terminal period. Grandmont and Younes
(1972, 1973), Hool (1976), Lucas (this volume), and Wilson (1978b) all take
this approach. Grandmont and Younes prove the existence of a stationary
monetary equilibrium and analyze the optimal quantity of money. Hool
solves a difficulty met by Grandmont and Younes. Wilson analyzes in detail
the nature of the equilibria in his model.
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The Clower constraint has a curious interpretation. In monetary models
which specify transaction costs, it is usually automatic that goods can be
exchanged only for money (or for other goods). This is so in the papers of
Hahn (1973b), Heller (1974), Heller and Starr (1976), and Kurz (1974b).
However, in models which do not specify transactions, the Clower con-
straint must be interpreted as a payments lag. It takes one period for money
to pass from buyer to seller.

The recent paper of Miiller and Schweizer (1978) uses the temporary
equilibrium approach of Grandmont (1974). But their model includes trans-
action costs and constraints related to those of Clower.

My work is closely related to the literature on temporary equilibrium.
Both monetary and stationary equilibria, as I define them, are forms of
temporary equilibrium. Unlike many models of temporary equilibrium, my
models have rational expectations. The literature on temporary equilibrium
has been surveyed by Grandmont (1977).

6. Lemmas
The lemmas of this section express relations between the marginal utility of
expenditure and equilibrium prices. I assume throughout that Assumptions
1-10 apply.

Let § (a), for a € 4, be the pure trade economy corresponding to state g
€ 4. Thatis, & (a) has I consumers and L commodities. The utility function
of the ™ consumer is ; (-, a) : RY — (—«, «), That consumer’s initial
endowment is w; (a) € RL.

An equilibrium with transfer payments for & (a) is of the form [g, ()],
where q € R% is the price vector and (y;) is a feasible allocation for § (a).
These must satisfy g > 0 and u; (y;, @) = max {#; (y,a) |y ERkand gy =
q-y:}, for all i. The transfer payment of consumeriis g - [e; (a) — y;]1. Clearly,
if every consumer’s transfer payment is zero, then the equilibrium is in fact a
Walrasian equilibrium in the usual sense.

The marginal utility of expenditure of consumer i associated with [q, (y:)]
is defined to be the Lagrange multiplier, «;, associated with the problem
max{u; (y,a) |y ER:and g-y=q-y;}. Thatis,

Ou; (yi, a) =t g

17 oy is the smallest number ¢ such that p
Xk

for all k; with equality if y;. > 0.

Throughout this section, q and gareasin (11).

LEMMA 1. (max; o?) g << q << (max; ai’') q, whenever Iq, (y)] is an
equilibrium with transfer payments for & (a), for some a € A, and where (&)
is the vector of marginal utilities of expenditure associated with 1q, (¥:)].
Proof. If [q, (y;)]is an equilibrium with transfer payments for & (a), then 0 <
y; < @, so that g << Du; (y;, a) << g, forall i.

By the definition of «;, oyq = Du; (y;, a), so that g >> (max; oY) g. This
proves the first inequality. -

Sy =3, @ (a) >> 0, sothatforeachk = 1, ..., L, yy > 0, for some i.
(Here I have used Assumption 4.) For this i, 8u; (y;, @) / 3xx = auqy, So that g
< &' G- This proves the second inequality.

Q.E.D.

185



Bewley

LEMMA 2. Let [q, (y:)] be an equilibrium with transfer payments for & (a),
for some a, and let (a;) be the vector of associated marginal utilities of
expenditure. Then max; a; < b min; o;, where b = max; g .-

Proof. It follows from the definition of «; that for each i, du; (y;, a) / 9x; =
gy, for some k. But g, > du; (y;, a) / dx,. Also, by the previous lemma, g, >
(minjey)~! g,.. Putting these inequalities together, I obtain g;. > o; (min; o;)~!
qr. It follows that oy < ¢! g miny o; = b(min; o).
- - Q.E.D.
An equilibrium for & (a) with transfer payments and marginal utilities of
money is defined to be [g, (y;), (A\;)], where [g, ()] is an equilibrium with
transfer payments for § (a) and where \; = o;, for all i, with equality if y; > 0.
Here (o;) is the vector of marginal utilities of expenditure associated with [q,
(¥)]1.

LEMMA 3. Let [q, (¥i), (M) be an equilibrium for & (a) with transfer pay-
ments and marginal utilities of money, where a € A. Then (max; Ni') g << g
<< b(max; \i*) q, where b is as in Lemma 2.

Proof. The first inequality follows trivially from Lemma 1, since A; Z a;, for
alli.

In order to prove the second inequality, let i be such that &; = min; ¢;. By
Lemma 1, g << &;"! g. By Assumption 4, there exists j such that y; > 0. Then,
A = ¢, and by Lemma 2, o = boy;. Putting these inequalities together, I
obtaing << bAj'g.

7. Proof of Theorem 1

The first step of the proof is to truncate the economy at the N*® period,
artificially giving money utility in the N™ period. I use a standard fixed point
argument to prove that the truncated economy has an equilibrium in which
money has price one in every period. I then prove that the N-period equilib-
rium prices are uniformly bounded away from zero and infinity. This fact
allows me to apply a Cantor diagonal argument in order to obtain a monetary
equilibrium in the limit as N goes to infinity. The hard part of the proof is the
demonstration that N-period equilibrium prices are bounded above and
bounded away from zero. Prices are bounded above because money is
needed for self-insurance and because high prices make the real stock of
money low. Prices are bounded away from zero because there is a limit to the
level of real balances that consumers will hold. This limit exists because the
interest rate is less than consumers’ rates of time preference.

7.1. The Finite-Horizon Economy
I truncate the economy at period V. In the truncated economy, it is sufficient
to deal with N-period price systems and programs. These specify prices and
consumption bundles in the first N periods only. An N-period allocation (x;)
is feasible if 31_; [x;, (ay, ..., @)— @; (a,)] = 0, for all histories ay, ..., a, and
forallnsuchthat I=n=N.

Given an N-period price system p, &'(p) denotes the unique N-period
program which solves the following maximization problem:

N
(18) maX( E{ 2 8P 1 [xn (S1y oees ), Sul + OF 7 My (P, X3 814 -..,sN)}

=1
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x is an N-period consumption program and M;, (p, x; a,
.., @) =0, for all histories a,, ..., a, andfor 1 =n = N).

Notice that money is given utility in the last period.

An N-period monetary equilibrium is of the form [p, (x;)1, where p is an
N-period price system and each x; is an N-period program. These must
satisfy the following conditions.

19 x; = &Y (p), foralli.
(20) (x;) is a feasible allocation.
(21) Pu(dy, ..., ay) >0, for all histories ay, ..., a,

and forall nsuchthat 1 =n=N.

LEMMA 4. Foreach N Z 1, there exists an N-period monetary equilibrium.

Proof. For the purposes of this proof, I allow money to have a different price
in every period. Component L + 1 of the vector of prices in any one period
corresponds to the price of money. Price vectors vary over A = II¥.,
I,,, .4, AL, where AZ = {g€ R | Skt q; = 1}. If g € A, I write g = [g, (ay,
ey @)l

I now add a vector € = (e, ..., €) to the initial endowment of each con-
sumer in every state of the world, where € > 0. That is, I assume that the
initial endowment of consumer / in state a is w;(a) + €, for all i and «. I also
give each consumer € units of money in each period. Later, I will let € go to
Zero.

The plan of consumer { is denoted by (x;, M;), where x; = [xi, (a,, ..., ay)]
and M; = [My, (ay, ..., ay)].

I truncate the consumption sets as follows. Let & € R% be such that Sf; o;
(a) + € << @, forall a € 4. 1 forbid each consumer to demand more than &;
units of good j, for all j, and to hold more than two units of money. In precise
terms, I truncate consumer i’s budget set to be the following compact set,
giveng € A.

B (g, &) ={(x;, M) | 0=xp, (ay, -, @) =B, 0= M, (ay, ..., a,) 2

and g, (ay, ..., @) [xin (@1, ...\ @n), Mg (@ys -, ay)]
§qn (al, aeey an)'[wi (an) +?5 (1+r) Mi,n-—l (ah reesy an—l) +e€ _Ti])
for all histories a,, ..., apandforn =1, ..., N}.

It follows from Assumption 7 that 87 (g, €) is nonempty.
[ let &F (g) be the set of solutions to the problem

N
maX< E{ 2 Oy [Xin (1, -e00 Sn), Su] + 87 My (51, ...,sN)} l

(x, My) €8T (g, e)).
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Since a consumer begins every period with a positive amount of every good,
including money, it follows that &7 (q) is a continuous function of g.
The monotonicity of «; implies that

(22) if & (q) = (%, My),
then g, (ai, ..., a,) [xi (ay, ..., an), M, (ay, ..., ay)]
=qn(as .o, @) [0 (an) +€,(1+r) My (ay, ..., @py) + € ~ 7],
foralli, n,and a,, ..., a,.

I define the aggregate excess demand function, Z(q), as follows. Let g €A,
and let & (g) = (x;, M;), for each i. Then Z(q) = [Z, (q; a4, ..., a,)], Where Z,
(@5 a1, -y @) = {3her [xin (@1, -, @2) = 0(@n) — & Mu(ay, ..., an) — (147)
M, (ay, ..., an—1) — € + 71}

(22) implies that
gn(ay, ..y an) Z,(q; ay,y ..., a;) =0,
forg € Aandforall nand ay, ..., a,.

This is the version of Walras’ law appropriate for the price space A. Hence,
by a slight extension of the standard fixed point argument, there is ¢ € A such
that Z(q) = 0. Let £] (q) = (x;, M), for i=1, ..., I. (The standard fixed point
argument may be found in Debreu 1959, p. 82, or in Arrow and Hahn 1971, p.
28. My proof is much like that in Hahn 1971b.) I call [g, (x;), (M;)] an
e-modified equilibrium.

I now let ¢, kK = 1, 2, be a sequence of positive numbers converging to
zero. For each k, let [, (xF), (MF)] be an ¢.-modified equilibrium. By pass-
ing to a subsequence, I may assume that lim,.., [¢*, (xF), (MF)] = [q, (x),
(M;)]1. I will show that g >> 0. Let p = [p, (a, ..., a,)] be defined by

(23) pn(ay, ..., an) = grlei(ay, ..., ai)
[in(an eeey an)v cees Qni (al’ s an)]-

It will be seen that [p, (x;)] is an N-period monetary equilibrium.
Before proving that g >> 0, I collect some facts.
First,

(24) [xin (ay, ..., ,) — w; (@)1 =0and

i~

-~

M~

[Min (als (48] an) - (l+r) Mi,n—l (ah sees an—l) + Ti] éo;

i=t

forallrand a,, ..., a,
It follows from (24) that 31, M. (a4, ..., a,) = 1, for all n and ay, ..., a,. It

is easy to see that 3%-, M¥, (a,, ..., a,) = 1,for all k, n, and qy, ..., a,. Hence,
S, M, (ay, ..., a) = 1. In conclusion,

188



The Optimum Quantity of Money

I
(25) S M, (ay, ...,a,) =l,forall nand ay, ..., a,.
i=

Next I observe that

(26) an(ay, ..., an)-{ .% [xXin (@y, o5 @n) — @ (@),

—-

1
igl [Min (al: sevy an) - (1+r) Mi,n—l (ah ARRE] an 1) + T!]} é

forallnand a, ..., a,.

I now prove that g, (ay, ..., a,) >> 0, for all n and a,, ..., a,. The proof is
by backwards induction n.

Let n = N, and fix a,, ..., ay. I first show that gy (ai, ..., ay) > 0.
Suppose that gy .+, (ay, ..., a,) = 0. Then gy (ay, ..., ay) >0, for some k = L.
There is some i such that wy, (ay) > 0 (by Assumption 4). Then gy (ay, ..., ay)
[ow; (ay), (1+1) My (ay, -.., ay—1) — 1] > 0. It follows easily that

27 [xwv (ay, ..., ay), My (ay, ..., ay)] solves the problem
max[u; (x, ay) + M | gy (ay, ..., an) (x, M) S gy (ay, ..., ay)

lwi (an), (149 M-y (ay, ..., ay-y) — 7]

and0=x=wand 0= M =2].
Since gy 141 (ai, ..., ay) = 0, it follows that My (ay, ..., ay) = 2. This con-
tradicts (25). Hence, g+ (ayy ..., ay) > 0.

By (25), My (ay, ..., a,) > 0, for some i. For this i, (27) is true. It follows at
once from the monotonicity of u; that if gy (a, ..., ay) = 0, then xu (ay, ..,
ay) = @y > Sk, oy (ay). This contradicts (24). Hence, gy (ay, ..., ay) >> 0.

Now suppose by induction that g, ,x (ay, ..., @yix) >> 0, for all histories a,,

, Guaps,and fork =1, ..., N—n. It tollows easily that for each i and q,, ...,
a,,,x, solves the problem max (E{ Zk Sy [ (Sts -oos Suvk)s Snar] +

S{V 1}‘IN(S ’SN) I Sp = an} l (xy M) € BT (q: 0) and M (al, LA an) = Min

(ay, ..., ay)). That is, x; solves the maximization problem for periods n+1 and

beyond. It follows that money is useful in period n, and hence, | may repeat

the argument just made in order to prove that g, (ay, ..., a,) >> 0, for all a,,

., a,. This completes the proof that g >> 0.

I must now show that [p, (x;)1is an N-period monetary equilibrium, where

p is defined by (23). It follows from what has been said that x; = &Y (p). The

feasibility of (x;) follows from (24), (26), and the fact that ¢ >> 0. Clearly, p

>> 0, so that [p, (x;)] satisfies conditions (19)—(21) of the definition of any
N-period monetary equilibrium.

Q.E.D.

Remark. The proof of Lemma 4 made no use of Assumptions 1-3, 8, or 9.
The proof applies even if the utility functions are only continuous, strictly
concave, and strictly monotone.

7.2. Boundedness From Above
[ next prove that prices in N-period monetary equilibria are uniformly
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bounded from above. It now becomes important to keep track of marginal
utilities of money. If [p, (x;)]is an N-period equilibrium, the marginal utility
of money of consumer / associated with [p, (x;)] is a vector A\; = [Ny, (a4, ...,
ay)]. Similarly, let o = [a;, (a4, ..., @)] be the vector of marginal utilities
of expenditure of consumer i associated with [p, (x;)1. ai, (ay, ..., a,) is de-
fined by (7). \; satisfies (28)-(30) below, for all histories a,, ..., a, and for n =
I,..,N:

(28) A (ayq, ...y ay) = max[ogy (ay, ..., ay), 11. If n < N, then
Nin (@4, .., @) = max{a, (ai, ..., ), 8; (1+r)
E [Nn+1(@rs oeny @ny Sptr) | Sy = Gpl}.
29) Av(ayy ooy ay) > lonly if My (p, xi3 a4, ..., ay) = 0. If n < N, then
Nin (@1 ooy @) > 8 (147) E Nins1 (ay, vy Gny Snat) | S0 = @]

only if My, (p, xi5a4, ..., a,) = 0.
30) Forall n, Ny, (ay, -.., @) > s (ay, ..., a,) only if x;, (ay, ..., a,) =0.

This subsection is devoted to the proof of the following.

LEMMA 5. There exist p € R4, A > 0, and 8 such that 0 < 8 < (l+r)~! and the
Sfollowing are true. Let [p, (x;)] be any N-period monetary equilibrium, and let
(\;) be the associated vector of marginal utilities of money. If 8; = 8, for all i,
then p, (ay, ..., a,) =P and Ay, (ay, ..., ay) E X, for all i, all n, and all histories
ay, ..., Gy,

In order to prove this lemma, | need some preliminary lemmas, which
exploit Assumptions 4 and 9. The economies & (a) appearing in the next
lemma were defined at the beginning of section 6. y is as in Assumptions 8
and 9.

LEMMA 6. Let Iq, (y:)] be a Walrasian equilibrium for & (a), for any a € A,
and let (oy) be the associated vector of marginal utilities of expenditure,
defined by (17). If i and a are such that wy. (a) = vy, for all k, then o; > max
{o; | jis such that q-y; = 2%, qi.}.
Remark. There exists j such that g-y; > 3%, g, for by Assumption 4, g-
Say2q- S o (a) 2135 g

In order to prove the above lemma, I make use of the following fact.

31 Foreachianda, u; (x, a) = u; [(1, ..., 1), al implies that du; (x, a) /
Ox;. < O, for some k such that x, > 0. Here, @ = (Q,, ..., OQx) is
asin Assumption 9.

This fact follows from Assumption 9 and from the concavity of i; (x, a).

Proof of Lemma 6. By assumption, wy, (a) = v, for all k. It follows that g;. yy
= (min; o) g Y = (Min; o) - y; = (Miny o5) ¢ w; (@) =G - @; (@) =y 252, Gns
for all k. Here, | have made use of Lemma 1. In summary, y; = 'y_q,:‘ sSL_,
G, for all k. Therefore, by Assumption 9,
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Ou; (yi, a)

> O, forall k.
axk

(32)

Let j be such that g-y; = 3% _; g, = q-(1,...,1). Then 1; (5, @) = u; [(1,...,
1), a], so that by (31)

auj (yja a)

(33) . >
Ok o,

, for some k such that y;. > 0.

By the definition of «; and «; [see (17)],

0w (i, a) 4 0% (35, @) _
0x;. Oxy

(34) o gr =

& qres

where k is as in (33).
Putting (32)-(34) together, it follows that o; > ¢;. This proves the lemma.
Q.E.D.
The next lemma says that Lemma 6 holds uniformly.

LEMMA 7. There exists € > 0 such that the following is true. Let [g,(y:)] be
any equilibrium with transfer payments for & (a), where a €A. Let (o) be the
vector of associated marginal utilities of expenditure. Suppose that | g-[yi —
wifa)l | = emax; of?, for all i. Then o; = (1+€) max{ay | jis such that q-y;
3wt gv}, for any i such that wy(a) =y, for all k.

Proof. If € did not exist, then for some a € 4, there would exist a sequence

Ig%, (yO)1, k =1, 2, ..., of equilibria with transfer payments for & (a), such
that
(35) | ¢*[wia) — yk] | =k~ max(af)~", foralli, and
J
L
(36) af < (1+k V)5, where g -y} = Elq,{‘ and w;(a) =y, forall k.
e

Here, (af) is the vector of marginal utilities of expenditure associated with
[g*, (¥F)]1.

I now apply a compactness argument. Without loss of generality, I may
assume that min; af = 1, for I may replace g* by (min; af')g*. Since min; of =
1, Lemma 1 implies that g << g* << g, for all k. The set of feasible alloca-
tions for & (q) is compact. Hence, | may choose a convergent subsequence
of equilibria. The limit {g,(y;)] is an equilibrium for & (a) with transfer pay-
ments. The corresponding subsequence of (af) converges to (o;), where («;)
is the vector of marginal utilities of expenditure associated with [g,(v)].
Passing to the limit in (35), I obtain g-[wi(a) — y;] = 0, so that [q,(y)] is a
Walrasian equilibrium for & (a). Passing to the limit in (36), I obtain ¢ = o,
where g y; Z3,,-; g, and wy, = vy, for all k. This contradicts Lemma 6.

Q.E.D.
Proof of Lemma 5. It is sufficient to prove that there exist § and A as in the
lemma. For by Lemma 3, I may let p = bA™'g.

Let 8§ = (1+€2)~1(1+r)~% and let A = e(1+€)~, where € > O is so small that it
satisfies the conditions of Lemma 7 and
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37 e=min{Py | a,b €A and P, > 0}.

(P, is the probability of transition from a to b.)
I now prove that § and A satisfy the conditions of Lemma 5. Assume that
(1+r) > §; ZA, for all i. I must prove the following.

(38) Min(ay, ..., a,) 2\, foralli, forall histories a,, ..., a, and forn =
1

3 = vey

I prove (38) by backwards induction on n. Clearly, (38) is true forn = N,
for Aw(ay, ..., ay) = 1> A.
Suppose that (38) is true for n+1. First I claim that

39) for any history ai, ..., @n+1, Aip+1(@1, <o+, Gni1) E (14+€)A,
whenever wy(d,.,) = v, forall k.

For suppose that eg(a,+,) = v, for all k, and that A\, (ay, ..., dny1) <
(1+e€)A. Without loss of generality, I may assume thati = 1.

Observe that {p,..(a;, ..., @ni1), Xinsi(@y, ---, Gue1)]} forms an equilib-
rium with transfer payments for & (a,). These transfer payments are made
with money. Since there is only one unit of money in the economy, | p,.(a;,
ey ) [Xina( @y, o Grin) — @0(Gni1) | E1=€el(1+€) A7 < €[A g4 an,
vovy Gnp)]7 Now by (28), Mwsi(ay, -.. ) @uat) Z @nsa(ay, - .., apia), forall d,
so that [Pn-u(ah v Qui) [Xinsr(ay, o, Gryy) — ©0(@4s)] | = € max;[ogne
(ay, ..., aye1)]~t Therefore, by Lemma 7,

apneidy, oo, Qi) E(1+E)nia(ay, - .., Gnyi),

where i is such that
L
Pn+i( @y, oo o) Guat) Xinsa(@y, -0y Gay) B kélpnﬂ,k(al, .oasay) >0.

Since Xinsi(ar, ..oy @) > 0, @ipailay, ..., Guir) = Mnadlay, oo, @nsd)-
Therefore, A nr1(@y, -+ oy Gnit) B Cprr (@1, vy Guer) = (1N lay, ...
anyy) Z (1+€)A, where the last inequality follows from the induction hypoth-
esis. This contradicts the hypothesis about A,,,.,(a,, ..., a,+;) and so proves
39).

I now prove that A;,(ay, ..., a,) Z A, foralliand g, ..., a,. By Assump-
tion 8 and by condition (37) on €, Problos(s,+) =y, forallk | s, = a,] Z €.
Therefore, by the induction hypothesis and by (28) and (39), A\j.(a,, ..., a,) =
S(1+NENnei(@y, - .., Gn, Sust) | 82 = @] >8(1+N(1-€) A + e(1+€) Al = \.
This completes the induction step in the proof of (38) and hence proves the
lemma.

Q.E.D.

7.3. Boundedness From Below
The next lemma asserts that prices in N-period monetary equilibrium are
uniformly bounded away from zero.

LEMMA 8. If8; < (I+n7, foralli, then there exist p € R4 and A > 0 such that
p >> 0 and the following are true. If [p,(x;)] is an N-period monetary equi-
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librium and (N,) is the associated vector of marginal utilities of money, then

pular, .., Q) Zpand No(ay, ..., ay) X, for all histories ay, ..., a, and for
all n.

Proof. It is sufficient to find A as in the lemma, for by Lemma 3, I may letp =
Alg -

I prove the lemma only for the case r > 0, since the proof for the case r = 0
is similar and slightly easier. Let

40) A=b+b%qg- E[klél(] +r)"‘1]r(max 1)

where b = max,gr'g: and @, g, and g are as in (11). Here K is a positive
integer such that

410 mjn[b‘&l—i—r)]""b‘l > 1.

Notice that by Assumption 7, 7; > 0, for all i, so that A < =,
It is sufficient to prove the following:

42) Ain(ay, ..., a,) =\, for all i, for all histories a,, ..., a, and for
n=1,...,N.

I prove (42) by backwards induction on n. First, (42) is true if n=N. To
see that thisis so, fix ay, ..., ay and let i be such that My (p, x;; a4, ..., ay) >
0. Then by (29), Ain(ay, - .., ay) = 1. Also, ap(ay, ..., ay) EApy(ay, ..., ay) =
1. Hence, by Lemma 2, ayy(ay, ..., ay) = b, for all j. But then by (28), Ajx(a,,
..., ay) = max(b,1) = b, for all j. Finally, by (40), b = \. This proves (42) for
n=N.

Suppose by induction that (42) is true for n+1, ..., N and that for some i
and ay, ..., @n, Ni{@y, ..., ay) > A Without loss of generality, I may assume
thati=1, so that

(43) Aulag, -.., ay) >\

I will prove that (43) implies the following.

(44) There exist i and a history a4, ..., G, +r following a, such that
Nnse @y, ooy Q) EB(1+0)b~ R and My, o ((poxis @y, < ooy Qusr)
=1y — UG - @)[Zhoi(1 + 1571, for =0, ..., T, where T =
min( K, N—n).

(44) leads to a contradiction. First suppose that 7 = N — n. Then (40) and
(44) imply that My(p, xi; ai, ..., ay) > 0. But then An(a,, ..., ay) = 1.
However, by (40) and (44), Apw(ay, ..., ay) Z [;(1+)PV¥b~1X Z b~1X > I,
which is a contradiction.

Suppose that T = K. Then (41) and (44) imply that A; ,.x(ai, --., Guig) =

[8:(1+7)]%b~t A > X, which contradicts the induction hypothesis. This
proves that (44) leads to a contradiction and hence that (43) is impossible.
Hence, the induction step in the proof of (42) will be completed once (44) is
proved.

I now prove (44). Let i be such that rM; ,(p, x;; a\, ..., a)) = 7;, where a,,
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..., a,areasin (43). Such ani exists by Assumption 7.

I first show that \j,(ay, ..., a,) 2 b~'A. Observe that A < Ay, (ay, ..., a,) =
max{aln(al: LS an),_61(1+r)E[)\1,n+l(a1y ceey dn, Sn+l) I Sp = an]} = max[aln
(ay, ..., a,), 8 (1+H ANl = a(ay, ..., an). The second inequality follows from
the induction hypothesis on n [regarding (42)]. Hence, by Lemma 2, Ay (a;,
o @) Zaplag, .., a) Z b a(ay, ..., ay) > b7 T have now proved that
i exists such that the inequalities of (44) are satisfied fors = 0.

I now prove by induction on ¢ that a,4y, ..., Gp.p €Xist as in (44). Suppose
that the conditions of (44) are satisfied for t no larger than some nonnegative
integer; call it f again. I may suppose that r < T. Then, M, ,.(p, x;; ai,...,
Anrg) Bl — N BA G @) [Shoi(1+7)*~1] > 0. The last inequality follows
from (40). Hence, by (29), Nave(ay, «--y Gne) = S +NE [N pieeiay, ...,
Qnits Sntt+1) I Su+t = Gnsl, SO that for some an+t+la_}\i,n+t+l(al, ey Quagr) B
[B:(1 )T Nineslay, .v, Guey) Z [8(1+9)]17“+*VH~1X. The last inequality
follows from the induction hypothesis on z.

I now show that M, .4 +i(p, X3 @1, + ., Quags) 271 — X D2 (g - @) (=5
(PP I agnara(an, ooy Graesr) < Mnsena(@, - o, @ngesr), then by (30)
Xin+t+10A1, oo oy Gneirr) = 0, so that M o (p,xis ay, ..., Anitry) =
(1HNDIMinsdD, X3 Qyy ooy Quye) — 71 (147 {Firy—2" B2 (g &) [3ho
(I+r¥-11} — 7 Z -y — N2(g-@) [ 3 (1+9%-1]. The third inequality
follows from the induction hypothesis on ¢.

Suppose now that g,y 41(a1, -+ -, Gpeeer) = Anat4l@r,y <oy Quirsr). Then
by the choice of a@,1¢41, ®niri1 (A1, ooy Auie+r) > b~PA. It follows from
Lemma 2 that min; & p4e41 (a1, ..., Guees1) > b7ZX, so that by Lemma 1,
Prverildy, ooy Quape) = b*X\'g. Hence, pryisi(@rs - ooy Guas) * Xipaeer (@, -
Guierr) = BEN! (70 @). 1t follows that A/_Ii,n+t+2(17yxi§ Ay ey an+t+ll
(I+NMinitei(ps X3 @y, ooy Guign) — T —PPNNG @) E (1+r)[rtry — A
bAF @) Sho (14111 = 7 = BN UG @) = r~in — X1 bX(G- @) SELI(1+r)F-t

This completes the proof that the two inequalities of (44) are satisfied for
t+1and so completes the induction step in the proof of (44).

This completes the proof of Lemma 8.

-1V

7.4. Passage to the Limit
I now apply a Cantor diagonal argument to the N-period equilibria in order to
obtain a monetary equilibrium in the limit.

Letdbeasin Lemma 5 and suppose thatd < §; < (1+r)~} forall i. For each
positive integer N, let [p¥, (x¥)] be an N-period monetary equilibrium, and let
(AY) be the vector of associated marginal utilities of money. By Lemmas 5
and8,p =pi¥(ay, ...,a,) = pand A = Mi(ay, ..., @) = X, for all i, n, N,
and a,, ..., a,. Similarly, 0 = x¥(a,, ..., a,) = &, foralli, n, N, and a, ...,
a,. Hence, the components of the vectors [p", (x¥)] and () are uniformly
bounded. There are countably many of these components. There exists a
subsequence of N such that one of those components converges. There
exists a subsequence of this subsequence such that another component con-
verges. Continuing in this way, I choose a sequence of subsequences, one for
each component. Taking the k' member of the &™ subsequence, I obtain a
subsequence of N such that all components converge. Let p = [p(ay, ...,
a)], xi = [xim(as, ..., a,)], and \; = [N,(ay, ..., a,)] be the limits of this
Cantor subsequence. I claim that [p, (x;)] is a monetary equilibrium with
associated marginal utilities of money (A;).

Clearly, p = pn(ay, ..., a,) = p, forallnand a,, ..., a,. Hence, condition
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(5) of the definition of a monetary equilibrium is satisfied.

Since $i_,[x¥(ay, ..., ay) — w;i(a,)] = 0, the same is true in the limit, and
so (x;) is a feasible allocation. This is condition (4) of the definition of
equilibrium.

I now show that x; € &(p), forall i, and so verify the last condition, (6).

FiI'St, Mi,n(p”; lev; A, ooy Q) = (l+r)Mi,n—l(er xia, oo, Qo) — T+
p¥ay, ..., a,) [w(a,) — x¥(a,, ..., a,)] Z 0, forall N. Passing to the limit in
these expressions and using the fact that M;, is given, I obtain that M;,(p, x;;
a,, ..., a,) =0,foralli, n,and a,, ..., a,. Hence, x; satisfies the constraints
of the consumer maximization problem (3).

I now prove that [p,(x;)]and (A;) satisfy conditions (8)—(10), (13), and (14).
First, it should be clear that My,(p,xi;a1, ...,a) = Z5c) My p, X530y, .. .,a) =
1,foralli, n,and a,,...,a,. This is condition (13). Condition (14) follows by
passage to the limit in the inequalities A = AY(a,,...,a,) = \. It remains to
verify conditions (8)-(10). Let (af) be the vector of marginal utilities of
expenditure associated with the N-period monetary equilibrium [p¥, (x¥)].
The convergence of the subsequence of [p¥,(x¥)] implies that the correspond-
ing subsequence of (&) converges to («;), where (;) is the vector of marginal
utilities of expenditure associated with [p,(x;)]. [The (¢;) are defined by (7).]
[p", (x¥)], (AY), and (a¥) together satisfy (28)—(30). Passage to the limit in
these inequalities gives (8)—(10).

[t now follows by definition that x; € &(p) when §; = 1. I must now show x;
= &(p) when §; < 1. If x; # &(p), then there exists X € B;(p) such that E{Z3~;
S [ X, (Sy, o v oy 80)s8uly > E{Z5%1 8771 wifxin (54, ... ,50),5,]} + €, where € >
0. Choose N such that 87~ < (2X)"teand E{35_y41 811 | 1;[X, (s1,..-,80),
snl |} < €4 and E{Z5_nss 8271 | tilxin(sy,...,50),80) | 3 < €/4. (It is easy to
see that these series converge.) x; solves the problem

(45) max (E{nél 6i"_.l"i[xn(sl: R rsn),sn]

+ VI (S, e S OMi( D X3S, ,sn)} x € Bi(p))

since p, x;, and \; satisfy (8)—(10). However, E{38_; 8! t;[Xu(s1, - - . ,Sn) »5n]
+ 8 Niw(S1, « o SOMin(D, T80, . ,80) 2 E{3521 807 [Xu(s1, . . - ,80),8a1} —
€/4 > E{35%2 8 xn(S1, .- ,S0),Snl} + 3 €/4 > E{ZN_ 87 'u; [x,(s,,
e aSu)aSnl + T Nw (81, - ,80) Miy(p,xiisy, - .. ,8y) }. The last inequality fol-
lows from the fact that E[8Y " "\iy(s1, .. .,s8) Min(p, x5 81, - ,s0)] < 8V <
¢/2. Hence, I have contradicted the fact that x; solves the problem (45). This
proves that x; = &(p).

I have now completed the verification of condition (6) and so have proved

Theorem 1.
Q.E.D.

8. Proof of Theorem 2
First I observe that

(46) Ain @y, ooy an) = ay (ay, ..., ay), foralli, n,and ay, ..., a,

where (o) is the vector of marginal utilities of expenditure associated with
the monetary equilibrium [p, (x;)]. (46) follows from (8), (10), and the as-
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sumption that x;, (ai, ..., @,) # 0, foralli, n, and a, ..., a,.
Next I observe that if the allocation (x;) is Pareto optimal, then

47 Nin @1y ooes @) = 8 (14+1) E [Npa1(ayy oov, @ns Snat) l Sp = dp],
foralli, n,and a,, ..., a,

where ()\;) is the vector of marginal utilities of money associated with the
monetary equilibrium [p, (x;)].

By (8), the left-hand side of (47) is at least as great as the right-hand side.
Suppose that for some i, n, and a,, ..., @n, Ain (@41, «-., @n) > & (1+7) E [\ n1q
(ayy oeey Any Spey) | S0 = az). Then by (9), My, (ay, ..., a,) = 0, so that for some j
7 iv M.in (ah (L] an) > 0. Again by (9)’ }‘J'n (ah ey an) = 8j (1+I') E[Ai.n'l-l (aly
eevs Qny Sus1) | Sn = a,]. Now I use (46) and find that oy, (ay, .-, @,) > 8; (1+r)
E [@ins1 (@15 -evy Gns Spi) | 80 = @] and ag, (a4, ooy @) = 8 (1+7) E [0,041 (a1,
vers Ay, Suy1) | Su = a,]. A standard argument now shows that a Pareto im-
provement could be made. Roughly speaking, consumer i should spend e
units of money more in period n (and when history a,, ..., a, occurs), where €
> 0is very small. And consumer i should spend (1 + r) € units less in the next
period. Consumer j should spend € less units of money in period n and (1 + r)
€ more in the following period. Thus, I have contradicted the assumption that
(x;) is Pareto optimal. This proves (47).

It follows from (47) that for each n and each history ay, ..., a, there exists
an., following a, such that A .4, (ay, .-, Guey) 20, (1 + N7 A (a4, -2y @n)-
Hence, there exists an infinite sequence a,, az, ..., such that Ay, (a;, ..., a,) Z
[8, (1 + N7+ \; (@) > 0. Since 8, (1 + r) < 1, it follows that lim, e A, (a5,
..., a,) = », This contradicts (12), so that (x;) cannot be Pareto optimal.

Q.E.D.

9. ALemma

In this section I prove a lemma which is in turn used in the next section to
prove Theorem 3. The statement of this lemma involves the concept of sta-
tionary equilibrium with transfer payments. Such an equilibrium is of the
form [p, (x;)], where p is a stationary price system and (x;) is a stationary
allocation. Each x; must solve the problem

(48) max{ S, wauily(a),al | y:A— R} and
a€A

2 map(a)ly(a) —x,-(a)]§0}
acA

where (m,) is the stationary distribution on 4. The transfer payment of con-
sumer i is Yqeq m, pla) -[w; (a) — x; (a)].

Given a stationary equilibrium with transfer payments [p, (x;)], money
holdings are defined as before. That is, My, (p, xi5 a4, -.os @) = (1 + r) M,
(P, Xi5 @y, weny Qny) + p (@) [ (@) — x; (a,)] — 7. 1 now allow the initial
holdings, M,,, to be arbitrary, though I continue to assume that 3}, M;, = 1
and3j_; 7, =r.

LEMMA 9. For almost every w €, the following is true. Let [p, (x;)] be any
stationary equilibrium for 8 (o) with transfer payments. Then for any distri-
bution of initial money balances and for any a; €A, M, (p, xi; aq, ..., @) <
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0, for some i and some history as, ..., a, following a;.

The proof of this lemma involves the marginal utilities of money as-
sociated with a stationary equilibrium [p, (x;)]. These are the Lagrange
multipliers associated with the constrained maximization problems (48). The
marginal utility of money of consumer i is a number A;.

Stationary equilibrium with transfer payments may be thought of as a
function of the associated marginal utilities of money. This fact is expressed
by the following lemma, which I do not prove here. Its proof is contained in
Bewley 1977c¢.

LEMMA 10. To each (\;) >> 0, there corresponds a unique stationary eqiuii-
librium with transfer payments such that (\;) is the corresponding vector of
marginal utilities of money.

The proof of Lemma 9 depends on the fact that the relation between
stationary equilibrium and marginal utilities of money is nearly differentiable.

In order to express this fact, I drop a € A from the notation, for the
moment. Let u; : R% — (—, «) satisfy Assumptions Sand 6, fori=1,...,7
Given A >0 and p € R% such that p >> 0, X; (p, A) denotes the unique vector
in R which satisfies the following (if such a vector exists):

9u; [X; (p, V)]

49
“9) 0z

= A\pi,fork =1, ..., L; with equality if X (p, A) > 0.

X; (p, \) is consumer i's demand as a function of prices and her or his
marginal utility of money. X; (p, A\) may not be defined if some price is too
low relative toA. Ilet G = {(p, A) €Eint R: x int R’y | X; (p, A;) is defined for
all i}. It is easy to see that G is an open set and that each of the functions X is
continuous on G.

Now let @ € R% be such that @ >> 0. Think of w as the total initial
endowment of the economy. Given A = (A, ..., A;) € int R, P(A) denotes
the unique vector p € int Rk such that 3i_, X; (p, A;) = . P(A) is a market-
clearing price vector, given the demand functions X; (p, A). Clearly, P(A) >>
0. I prove in Bewley 1977¢ that P is a continuous function.

Observe that P(A) is homogeneous of degree minus one with respect to A.
That is, P (tA) = t~' P (A), for all t > 0. Hence, I may restrict A to int A’~! =
{AElntR IE, 1A1_ ]}
LEMMA 11. int AT-! is the union of finitely many sets, closed in int N, on
each of which the function P(A) is continuously differentiable. Similarly, G is
the union of finitely many sets, closed in G, on each of which all of the
Sfunctions X; (p, A;) are continuously differentiable.
Proof of Lemma 11. First I deal with the functions X; (p, A)).

Let S be the set of all subsets of {1,...,L}. Foreach S €S, let

ou; [X; (p, N)]

Cs{= {(p,}\) EG
0z

= Api,fork €8,

and X (p,\) =0, fork & S}.

Clearly, Cs; is closed in G and G = U {Cg|S € S }. I show that X; is
continuously differentiable on each set Cy;.
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Let X (p, A) be the function defined by

Ou; [ X (p, M)]
azk

(50) = Ay, ifkES

KXo (p,N) =0,ifk &S.

Clearly, if (p, \) € Cg;, then X§; (p, A) is well defined and equals X; (p, \).

Recall that a function defined on a closed set C C R™ is said to be differ-
entiable if it has a differentiable extension fdefined on an open neighborhood
of C. Hence, I must show that X, has a continuously differentiable extension
to an open neighborhood of Cg;.

Since u; : RY — (—», x) is continuously differentiable, it has a continu-
ously differentiable extension #; : ¥V — (—, =), where V is an open neigh-
borhood of R%.

I now apply the implicit function theorem to the equation (50) with #;
substituted for u;. By the implicit function theorem, Xj; is defined and differ-
entiable on an open neighborhood of Cg; if the matrix of partial derivatives of
the left-hand side of (50) with respect to the components of X§; is invertible,
these partial derivatives being evaluated at an arbitrary point Xg; (p, A) for
(p, \) € Cg;. This matrix of partial derivatives is given here, where | have
assumed that S = {1,...,K}. i; appears in the matrix rather than #;, for the
derivatives are evaluated at a point in the domain of u;.

8% 8%y, 8%u; oy,
82,0z, D258z, 824102, 82,02,
0%u; 8u; 0%u; X . 0%y,
7,0z, Ozxdz  OzZx4i0zx 8z, 02x
(51)
0 0 [ 0 0
0 1
) oo
0 0 0 0 1

This matrix is invertible. For by Assumption 6 the matrix D%y; (x) = (8%; /
8zx Ozn) is negative definite. Hence, the submatrix in the upper left-hand
corner of (51) is negative definite and so is invertible. It follows at once that
the whole matrix is invertible. This completes the proof that X; is
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differentiable on Cg;. Since the matrix (51) depends continuously on the
components of X, it follows that X; is continuously differentiable on Cj;.

I now turn to the function P(A). Let 87 = {(S,, ..., 8)) [ S; € S, forall i}.
If § € 8, let Cs = {A € int AI=! | [P (A), A;] € Cy, for all i}. Since P is a
continuous function, Cy is closed in int A7-% Clearly, int Al-!' = U {Cg | § €
STy

Now let § € ST be such that Cy is not empty. Recall that P(A) satisfies the
equation %, X; [P (A), A;] = o >> 0. Essentially, what I do is to apply the
implicit function theorem to this equation. In order to do so, I let f5 (p, A) =
Si- Xs,; (p, Ay), where X, is defined by (50) and S; is the i component of S.
Let E be the matrix of partial derivatives of f (p, A) with respect to the
components of p, these derivatives being evaluated at [P (A), Al. I must show
that E is invertible.

Let D, Xg; [P (A), Al denote the matrix of partial derivatives of the
function Xg; (p, A) with respect to the components of p, these derivatives
being evaluated at (p, A) = [P (A), A;]. It is easy to see that D, Xg; [P (A), Al
is of the form A, E;, where E; is defined as follows. Let D§ u; {Xsii'[P (A), A}
be the | §; | X | S; | matrix of second-order partial derivatives of #; with re-
spect to variables with indices in S;. This matrix is negative definite. If £ and
m belong to S, then the (&, m)™ entry of E; is that entry of the inverse of D§,
{ Xs; [P (A), Ai]} which corresponds to &' and m'™ commodities. The rest of
the entries of E; are zero.

Let A € Cy. Foreach k& = 1,...,L, X;. [P (A), A:] > 0, for some i. This
statement follows from the fact that 3%, X; [P (A), A;] = o >> 0. Therefore,
for each k, the k" row of E; is nonzero, for some i. Hence, since the A; are all
positive, every row and column of E = 3%_, A, E; is nonzero. 1t now follows
from the nature of the matrices E; that E is negative definite. Hence, E is
nonsingular, as was to be proved.

Q.E.D.

Foreacha €4, let X; (p, A, a) be defined from u; (-, @) by (49). Similarly,
if A €int R} and w € int R, let P (A, w, a) be the unique vector p € int R}
such that 3!, X; (p, A, a) = w. For each a and w, Lemma 11 applies to the
functions X; (p, A, a) and P (A, o, a). Also, it is easy to see that P (A, w, a) is
a continuous function of w. (In fact, P is just as differentiable with respect to
w as it is with respect to A.)

I now turn to the proof of Lemma 9. Throughout the proof, if o € Q, then
o = [0” (a)]qea is defined by o7 (a) = 3., o; (a). The total initial endow-
ment of the economy is o.

Proaof of Lemma 9. 1 first prove the lemma for r = 0.

By Assumption 10, I may choose a, € 4 for which there are two histories
going from a, to itself. Also, each of these histories contains an element
which is distinct from a, and does not appear in the other history. For nota-
tional simplicity, I assume that these distinct elements occur just after a, in

the histories. Let ay, a4}, ..., ay and a,, 43, ..., a: be the two histories, where
ay, = ay, = a,. Then a} does not appear in a3, ...,za,%z and a3 does not appear in
a}, ..., al. Also, I may assume that a} does not appear in al, ..., ay, forj =1,

2, for [ may eliminate closed loops beginning with .

Let [p, (x;)] be a stationary equilibrium with transfer payments for &§ (w),
where o € Q. Let A = (A;) be the vector of associated marginal utilities of
money. Then p(a) = P[A, o7 (@), aland x; (a) = X; { P [A, o7 (a), al, A;, a},
for all i and a. 1 now simplify the notation by writing P[A, o” (a), alas P (A,

199



Bewley

o”, a) and by writing X; { P [A, &" (a), al, A;, a} as X; (A, o7, a).

The net expenditure of consumer i during the course of the cycle b, ..., ai
is En_zp (a}) 1x; (&) — w; ()], forj = 1, 2. If this quantity is not zero, forj =
1, 2, then the money balances of some consumers must be negative at some
time and for some history. For with positive probability, a’z, . a,’v could be
repeated an arbitrarily large number of times in succession. ln this case,
consumer { would accumulate or lose an arbitrarily large quantity of money.
In either case, someone would eventually hold a negative quantity of money.
Therefore, in order that Lemma 9 be true, it is enough that

N,
(52) for almost every w € Q, ngz p(d)-[x:(ah) — w; (ad)]#0,
forj = 1or2and for somei.

The equation SH- 2 P (&) - [x; (&) — w; ()] = 0 holds if and only if o;,

ah) = [Pl(a )] 1 I 2 =2 p (&) [x; (ah) — w; (&)1 + py (dh) oy (ajz)l, where
wll (a) is the first component of w; (@) and p; (a) is the first component of
p(a). Substituting the appropriate functions of A and w7, I obtain

N,
(53) wi (ah) = [P (A, o, )] % P(A, o7, &)

[X (A, w, aJn) - W (aJn)] + Pl (A7 wT7 aJZ) Wy (aJZ) .

Notice that the right-hand side of (53) does not depend on either w;, (a}) or
w;; (ad), provided that Zi_, w;; (&%) is held constant. Here I use the assump-
tion that for each j, &% does not appear in @, ..., ai, and does not appear in ak,

, i, for k # j. 1 now parameterize » by (wa,wﬁ), where o, is the vector
[wu (ad), ..., w11 (@), w1, (@3), ..., wp-1,1 (a§)]and wgis the vector

I .
{[ '21 w; (&%) ] 1o [ (ajz)]i=1,___,1;k=2,...,L:j=l,2’ Lo (a)]i=l...-,l:a7‘a£,a%}'
= J=1,

Clearly, (@, wg) is simply a coordinate system for ().

The right-hand side of (53) depends only on A and “’B' Denote this right-
hand side by f;; (A, wg), wherej = 1,2 and i = 1, ..., I. (52) may now be
rewritten as

34 for almost every w € (1, fj; (A, wp) # @;1 (a%), for j = 1 or 2 and for
somei=1,..,[—1.

In order that Lemma 9 be true, it is sufficient that (54) be true for every A
€ int RL. More precisely, it is sufficient to prove the next statement.

(55) For almost every w € Q, the following is true. For every A € int
RL, fii (A, wg) # w;, (ah), forj = lor2andforsomei=1,..., /-1

The functions f;; are continuous, so that the set of @ in € for which (55) is
true is measurable. It follows from the Fubini theorem that it is enough to
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prove (55) for o with @g constant. More precisely, it is sufficient to prove the
following.

(56) For each fixed @g, the following is true for almost every w, = [0,
(ad), ..., 011, (ad]. Forevery A Eint R+,fﬂ (A, ©g) # wy (db),
forj—lor2andforsomez i=1,..,1-1

I now prove (56). Since @g is constant, I may write f; (A, @g) as f; (A).
Notice that f; is homogeneous of degree zero. That is, fj; (tA) = fﬁ (A), forall
t > 0. Hence, I may restrict A to int A’-%, Consider the function F: int AI~1 —
R#-% defined by F(A) = [fi, (A), ..., fi. 121 (A), far (N), -0, o, 12 (A)1. (56) is
simply the assertion that almost every w, does not belong to the range of F.
Hence, it is sufficient to prove the following.

57) The range of F is of measure zero.

By Lemma 11, F is continuously differentiable on each of a finite number of
sets closed in int A/~ the union of which is int A’~L dim A~ = -1 < 2/-2,
since I = 2. Therefore, the range of F is of measure zero.

This completes the proof of Lemma 9 for the case r = 0. I now turn to the
case r > 0. The proof is quite similar.

I now use Assumption 10 to obtain three histories, a,, dab, .. a{v’, where j
=1,2,3and gy = a, forallj. Also for eachj, afz does not appear ind, ..., al,
and does not appear in either sequence a5, ..., af,, for k# .

Let [p, (x;)] be a stationary equxllbnum Suppose that consumer { is in
state a, during period one and has M; units of money at the end of the period.
Suppose that consumer i then passes through the cycle @, ..., ay. Then at the
end of period N}, she or he has M; (1 +ry! + Sh, (1 +r)”1"" {p (a [wl (ad)
— x; (a})] —7;} units of money. This sum must equal M;, for all j, if it is to be
true that no consumer ever holds negative money balances.

I now proceed as before. If w € (), then o, and wg are defined as follows.

Wy = [wll (aé)y eeey Wr—1,1 (aé)’ W1 (a%)! vesy Wr—1, (a%)’
o (ad), ..., wroy,; (af)] and
I .
g = {[ :Z'n w; (@) ]j=l.2,3; [wie (@D ]ici, .o 1ik=2, ., L2j=1,2,3}
[wi (a)]i=l, o liazal,ad, a} }
M = (M;) denotes the vector of initial holdings of money, held at the end of

period one in state a,. M varies over A’-' = {M € R, | i, M; = 1}. It is
sufficient to prove the next statement.

(58) For each fixed @g, the following is true, for almost every w,: For
every (M, A) EA'! X int Ry fi(M A, @g) #* oy (ah), fOI‘j =
1,2,or3andforsomei=1,. -1

where fi (M, A, @) = ~(14r2 1Py (A o @it (M, [y = 1]

,,- 2 (1+r—™ {P(/(g o, d%) - [w; (a}) — X; (A, o, &)] —7; —(1+rY2 P, (A,
o', @) w;, (a'z)}) In thlS formula, o7 is the total initial endowment deter-
mined by @ @g.
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Now let F: A\—! X int RI7'— R¥-3be defined by F(M, A) = [fi, (M, A,
wﬁ), --"fl,I—l (M’ A7 5[3)7f21 (M’ Av 53)9 "'af3,1—l (M1 Aa a_)ﬁ)]' (58) is implled
by the next statement.

(59) For each @g the range of F has measure zero.

The dimension of the domain of F is 2I—2 The dimension of its range is
37-3, which exceeds 2I—2 since I 2 2. By Lemma 11, F is continuously
differentiable on each of finitely many sets closed in A’=! X int R{~* These
facts imply (59).

This completes the proof of Lemma 9.

Q.E.D.
10. Proof of Theorem 3
Let w € ) be such that
(60) if [p,(x;)] is a stationary equilibrium for & (w) with transfer pay-

ments, then for any distribution of initial money balances and for
any a, € 4, Mu.(p,x;;a,,...,a,) <0, for some { and some history
as, . ..,a, following a,.

By Lemma 9, it is enough to prove that if §; = (1+r)~%, then & (w) has no
monetary equilibrium.

The outline of the proof that § (w) has no monetary equilibrium is as
follows. If & (w) had a monetary equilibrium, then the associated marginal
utilities of money for each consumer would form a supermartingale. Hence,
by the supermartingale convergence theorem, they would converge, so that
they would eventually be nearly constant. If they were nearly constant, then
some consumer would eventually exhaust her or his holdings of money. This
contradiction establishes that & (w) has no monetary equilibrium. The idea
that a consumer would exhaust money holdings is used to prove the following
lemma.

LEMMA 12. Let A and '\ be positive numbers and A < '\. Then there exists a
positive integer K, depending on \ and X, such that the following is true. Let
[p,{x;)] be any monetary equzlzbrmm and let (\;) be the vector of associated
marginal utilities of money. Suppose that A = \y(ay, ... ,a,) = X, for all n and
a;,...,a,. Then for any history a,, . ..,a,, the following must hold for some i
and for some history .y, . . . ,ansi following a,, where 1 =k = K: | Njner(ay,
Slnik) = Mn(@is - -, 0) ‘ > KL
Proof. Suppose that the lemma were false. Then there would exist a sequence

of monetary equnllbna [p*(xF)] such that for some history af, ..., af, |
NG rclall, .. ak a0, anK+k) ,,,K(a,,.. ank) | < K-1, for all histor-
188 Qy 41, - - -, Qnytk fo’]lowmg af ,where | sk =<

Since there are only flmtely many points in A I may assume that af
a,EA, for all K. 1 may also assume that nK =1, for all K. For I may restrict
[ p%,(x)] to histories following a¥, .. . That is, I may define [p, (£)] by

bu(@az, ... ,an) = pi o laf, ..., an ,az, ..., a) and so on. [p, (%] is
defined only for histories starting with a,, but this is sufficient for my pur-

poses. L use [p¥,(x¥)] again to denote [3,(£)]. In summary, I may assume that

(61) | zk(ﬁnaz,---,ak)

E(@) | = K-, for all histories a;,as, . . .,a;
beginning with 7, where 1=k=K
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By a Cantor diagonal argument, I may obtain a subsequence of monetary
equilibria~—call it [p¥,(x¥)] again—such that [pX,(x¥)] and (A¥) all converge.
The limit [p, (x;)], forms a monetary equilibrium (restricted to histories be-
ginning with a;). In proving this fact, one proceeds as in the last section of the
proof of Theorem 1. The limit marginal utilities of money (A;) are the mar-
ginal utilities of money corresponding to [p, (x;)]. By passage to the limit in
(61), 1 obtain that Ay (@,,a,...,ay) = A(a,), for all i and for all histories
a,as, . . . beginning with a,.

By Lemma 10, there is a unique stationary equilibrium [, (£;)] with mar-
ginal utilities of money [A;(a,)]. Hence, x;,(a;,a., . . - ,a,) = £i(a,) and p,(&,,
a,, ...,a,) = p(ay), for all histories a,,a,, ...,a,. It now follows from (60) that
Ml p,xs3@,az, .. . ,a,) < 0, for some i and some a,, ...,a,. This contradicts
the fact that [p,(x;)] is a monetary equilibrium. This completes the proof of
Lemma 12,

Q.E.D.

I may now prove Theorem 3.

Proof of Theorem 3. Let [p,(x;)] be a monetary equilibrium, and let (A;) be the
associated marginal utilities of money. Since §;(1 + #) = 1, (8) implies that

(62) Nn(@y, o o,y) B E [Mpyr(ay, ... ,a,, Spyr) l sp = @), for all i, n,
anday,...,a,.

(62) says that the random variables A;,(sy, ...,s,) form a supermartingale.
Since the A\;,(s,,...,s,) are nonnegative, | may apply the supérmartingale
convergence theorem (Doob 1953, p. 324). This theorem implies that the
Ain(Sy,...,5,) converge almost surely. Let A;u(s;,8s,...) be the limit random
variable, fori=1,...,I.

By (12) or (14), the components of the A; are bounded away from zero and
infinity, so that I may apply Lemma 12. Let K be as in the lemma.

Since lim, o Ain(S1, - - -,82) = ANo(S1,52, . ..) almost surely, there exists N
such that Prob [ | Ai(s1,...,8) — ANl S1,8,...) | = (2K)~1, for some i and
some 1 = N] < €%, where € = min {F,;, | a,b € A, Py, > 0} and the B, are the
transition probabilities of the Markov chain {s,}. It follows that there exists
a history ay,...,ay such that Prob [ | Miu(au,...,anSne1s---,852) — Awla,,
..oay) | Z KT for some n > N | sy = ay] < €. But for any history
ay+t, . - -0, following ay with n = N + K, Prob [(sys1,-.-,82) = (Qy+p, .-+ ,aQn)
| sy = ay] = €. Therefore, | Aplay, .-« an,@ye1, - --,82) — Aiwlay,...,ay) | <
K~L for all n such that N < n = N + K and for all ay,,,...,a, following ay.
This statement contradicts Lemma 12. This completes the proof of Theorem
3.

Q.E.D.

11. Proof of Theorem 4
The rough idea of the argument is as follows. If the price systems p* did not
converge to zero, then the sequence [p*,(xF)] would have a limit point [p,(x;)]
which would be much like a monetary equilibrium with interest rate equal to
§-! — 1. An argument similar to the proof of Theorem 3 shows that no such
limit equilibrium exists, almost surely.

There is a snag in this argument. Prices in a monetary equilibrium are
uniformly bounded away from zero, and they need not be so in [p,(x)].
However, prices in [p,(x;)] are bounded above, and this fact makes it possi-
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ble to imitate the proof of Theorem 3.
The limit equilibrium [p,(x;)]1is what I call a pseudomonetary equilibrium.
A pseudomonetary equilibrium is a vector [p,(x;),(M)]. p = [pu(ay, . .. ,a)]
is a price system. (x;) is an allocation in the usual sense. A\; is a vector of
marginal utilities of money, as before, except that I allow some or all of the
numbers A\, {a, ..., a,) to be infinite. [p,(x;),(\;)] must satisfy the following
conditions.

(63) (x;) is a feasible allocation.
(64) Forsome A >0, A\;u(ay, ..., a,) E A, foralli, n,and ay, ..., a,.
Foralli,n,anda,, ..., a,,
(65) Mnlay, ... ,a,) = max {au(ay, - . @), EMNns1(@1, -+ 1@, Sns1) |
S = al}
(66) Nn(@s, -, 8a) > EDhins (@1, « -+ n,$a01) [ 80 = ]
only if M; ,4y(ay,...,a,) =0
(67) Aplay, .. .,ay) > ag(ay,...,a,) only if xj,(ay,...,a,) =0
(68) M (p,x;sa,, . ..,a,) Z0and élM,-,,(p,xi;al, cesan) = 1.

Notice that (64) and Lemma 3 imply that p,(a,,...,a,) = b X 1g, foralln
and ay, ...,a,. Also, if A\, (a,, ...,a,) <o for some i, then by Lemma 3, p,(a,,
cenan) > 0.1t pulay, ... ,a;) > 0and Ay (ay, - .. ,ay) = =, then x;(ay, ... ,a,) =

I say that a pseudomonetary equilibrium is nontrivial if A, (a,, .. .,a,) < =,
forsomei, n,and a,,...,a,.

In order to show that nontrivial pseudomonetary equilibria do not exist
almost surely, I introduce the concept of pseudostationary equilibrium with
transfer payments.

A pseudostationary equilibrium with transfer payments is a vector [p,(x;),
(M\)], where p and the x; are functions from 4 to R4 and each A; belongs to
(0,<]. Notice that the A\; may be infinite. [p,(x;),(A\;)] must satisfy the follow-
ing conditions.

(69) (x;) is a feasible stationary allocation.
a it 3’
(70) Forall iand g, 2 M =\ (o) fork =1,... ,L;

[e74%
with equality if x;(a) > 0.

I say that a pseudostationary equilibrium with transfer payments, [p,(x;),
(A\:)], is nontrivial if A; < =, for some i. Then p(a) >> 0, for all i. If [p,(x;),(A)]
is nontrivial and A; = =, then x;(a) = 0, for all a.

The lemma before simply says that Lemma 9 applies to pseudostationary
equilibrium.
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LEMMA 13. For almost every w € 1, the following is true. Let [p,(x;),(\)] be
any nontrivial pseudostationary equilibrium for & (w) with transfer pay-
ments. Then for any distribution of initial money balances and for any a; €
A, Mu(p,xi;a,, ... ,a,) <0, for some i and some history as, . . . ,a, following a,.

Proof. The proof of this lemma differs from that of Lemma 9 only in detail.
Since there are only finitely many subsets of {I,...,/}, one may fix the
subset of consumers for whom \; = %. Those consumers consume nothing.
The rest of the argument is as in section 9.

Lemma 14 below is the analogue of Lemma 12.

(71) Let w € Q be such that if [p,(x;),(A;)] is a nontrivial pseudosta-
tionary equilibrium for & () with transfer payments, then for any
distribution of initial money balances and for any a, € 4,
M (p,xi;a,,...,a,) < 0, for some i and some history a,,...,a,
following a;.

LEMMA 14. Let A and X be positive numbers such that 0 < A < X. Then there
exists a positive integer K, depending on A and X, such that the following is
true. Let [p,(x;)1 be any pseudomonetary equilibrium for § (w), and let (\;) be
the vector of associated marginal utilities of money. Suppose that \y(ay,
ce,@y) = X, for all i, n, and a,,...,a,. Let a,,...,a, be any history, and

suppose that Ay, (ay,...,a,) = N, for some i. Then | MNiax(ay,....anei) —
Mn(@i, ... ,a,) | > K74, for some i such that A\y(ay, - ..,a,) < % and for some
history ayiy, . .. ,an i following a,, where | =k = K.

Proof. This lemma follows from (71) just as Lemma 12 followed from (60).

I need one more lemma which guarantees that prices in the equilibria [p¥,
(xf)] are uniformly bounded from above.

LEMMA 15. Let 8; =8 < I, foralli. There exist p € R, > 0andr > 0 with 0 <
r < &1 — I such that the following are true. Let [p,(x;)] be any monetary
equilibrium with interest rate r, and let (\;) be the vector of associated mar-
ginal utilities of money. [fr <r <8 — [, then py(ay,...,a,) = p and \y(ay,
e @) E N, foralli, all n, and all histories ay, .. . ,a,.

Proof. It is sufficient to prove that A and r exist as in the lemma. For by
Lemma 3, I may let p = bA™'g.

Let e > O be as in the proof of Lemma 5, and let A = e(1 + €)= and r= 6-1(1
+ €2)~ (1 + 27'€?) ~ 1. By choosing e sufficiently small I may assure that r >
0. Clearly,r < 8=! — 1. Note that A isasin Lemma 5.

Suppose that r = r < 87! — 1, and let [p,(x;)] be a monetary equilibrium
with interest rate r. Also, let ()\;) be the vector of marginal utilities of money
associated with [p,(x;)]. By (12) or (14) there exists A > 0 such that A\;;(a,,
...,ay)Z A\, foralli, n,and a,, ...,a,. Suppose that A < A. I will show that

(72) Ap(ay,...,ay) A1 + 27, foralli, n, and a,, .. .,a, and for all
positive integers k such that A(1 + 271e?)*~1 < A.

Clearly, (72) implies the lemma. For let k be such that (1 + 271€2)*~I\ < A
and (1 + 2712 A= A, By (72) Ain(@y, .. -,a) = (1 + 27 1e2)k A = A, for all i, n,
and a,,...,a,,asisto be proved.

I prove (72) by induction on k. (72) is true for k = 0, by the definition of A.
Suppose that £ is such that A(1 + 271€?)F < X, and assume by induction that
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Ainlay,...,a,) = M1 + 2-%e?)k, for all i, n, and a,,...,a,. The proof of (39)
proves that A\j,(ay,...,a,) Z (1 + €) (1 + 2712, if wy(a,) = §, for all k. But
then, as in the proof of Lemma 5, A\ (a,,...,a,) 281 + (1 — €) + (1 +
al(1 + 2-1e®)k\ = A1 + 2-1e?)k+1, This completes the induction step in the
proof of (72) and hence proves the lemma.
Q.E.D.
I now turn to the proof of Theorem 4.

Proof of Theorem 4. By LLemma 13, | may assume that (71) applies to & (w).
Let [p*, (xF)] be a sequence of monetary equilibria for & (w), the k™" having
interest rate ;.. By Lemma 3, it is sufficient to show that

(73) if [p*,(xF)]is as in the theorem,
then limy_., M, (ay, ... ,a,) = ©uniformly

where (Af) is the vector of marginal utilities of money associated with
[P*.(x)].

Suppose that (73) were false. Then there would exist a subsequence of
[p%(xF)1—call it [p%(xF)] again— with the following property. There is A < «
such that for each k, A, (ak, ..., a5,) =\, for some i and af, ..., af,. Since
there are finitely many indices i and a, I may assume that i, = i and af, = @,
for all k. Also, [p* (x¥)] forms an equilibrium when restricted to histories
following af,..., ak. Therefore, 1 may assume that n, = 1, for all k. In
summary, I may assume that for some i and a,, \y(@,) = \, for all k. Without
loss of generality, | may assume that i = 1, so that A (a,) =\, for all k.

By a Cantor diagonal argument, [ can prove that there exists a subse-
quence of [p¥(xk)] such that pf(a,,a., . .. ,a,), xE(ay,a., . . . ,a,), and Ag(a,,
as,...,a,) all converge for all i, all n, and all histories a,, .. .,a, following a,.
Let [p,(x;)] and (\;) denote the vectors of limits. It is easy to see that [p(x;),
(M) is a pseudomonetary equilibrium, except that it is defined only for his-
tories beginning with @,. (64) follows from Lemma 15. (65) and (66) follow
from the fact that limg_,.(l + ) = 1.

I now show that I may assume the following.

(74) For every i, either \;,(a@;,a, .. .,a,) = «, for all n Z 1 and for all
histories @,,as,...,a,, Or Ap(@y,as, .. .,a;) < », for all n = 1 and
for all histories @y,a,, .- . ,a,.

Clearly, (65) implies that the following is true.

(75) If Ni(@y) < 0, then Ay (@y,as, - - . ,ap) < o, foralli, n, and a,, .. . ,a,.

1 now proceed by induction on i. Since \,;(d,) = \ < =, (75) implies that (74)
is true for i = 1. Suppose by induction that (74) is true fori = 1,...,j—1 < I.
If A;4(@,) < , then (75) implies that (74) is true for j. If Nju(@y,as, . . . ,a,) =,
for all n and @,,a,, . . .,a,, then (74) is true for j. Suppose that A\;,(@;) = « and
that A\, (@y,as, . . . ,a,) < o, for some n and a,, . . .,a,. Then [p,(x;),(N\;)] forms a
pseudomonetary equilibrium when restricted to histories beginning with
(a,,as,...,a,). Hence, I may relabel a, as @,, and I have that (74) is true for i
=1,...,j. This completes the induction step, and so I may assume that (74) is
satisfied.
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Now I proceed more or less as in the proof of Theorem 3. Let J =
{i=1,...,I | \y(@) < =}. By assumption, 1 € J. For all i € J, the random
variables \,(@,$3, ...,s,) form a supermartingale. Hence, they converge
almost surely.

Now let K be as in Lemma 14, where the A in Lemma 14 is the same as the
Ain Lemma 15. Let the \ of Lemma 14 be such that X > 2 \,(a,). Finally, let
n= mm {Pab l Pab > O,a,b EA}

Since the random variables \;,(a;,s8s, . .. ,s,) converge almost surely, there
exists N such that Prob [| Na(@;,82, - - - ySysSh+15 - -« 580) — Aan(@1,82, .. . ,8%) | >
K- for some i € J and for some n > N ls, = @] < 2-'n% Next, observe that
Prob [Ay(@y,52, .- .,5%) =X | s, = @] = 1%, since X > 2\,(&,) and the random
variables Ay,(s,,52,...,5,) form a nonnegative supermartingale. These two
inequalities imply that there exist a,,...,ay with the property that A (a,
ap, ... ,aN) §7\. and Prob [I)\i,,(ﬁl,ag, oo AN, SN, . ,Sn) - )\m(ﬁl,az, e ,a‘v) I
> K- for some i € J and some n > N | sy = ay]l < %*. Hence, by the
choice of m, | Nin(@1,@as, - . -, @8, Gx1s - - - ,Gn) — Min(@1,02, . .. ,ay) | = K7 for all
i € J and for all ay,,,...,a, following ay such that N = n = N + K. This
contradicts Lemma 14. This completes the proof of Theorem 4.

Q.E.D.

12. Proof of Theorem 5
What follows is largely a reinterpretation of the argument given by Arrow
(1964) in his pioneering paper.

I first prove that a stationary equilibrium exists. In order to do so, I define
a pure trade economy & which represents, roughly speaking, a cross section
of the economy at one moment in time. The commodity space of & is R4},
where |4 | is the number of points in 4. I write x € R4 as x = [x(a)laca.
where x(a) € R: The initial endowment of the i*" consumer is w; = [w;
(a))ea, i = 1,...,1. The utility function of the " consumer is S,c, 7 11[x;
(a),a), where (,) is the stationary distribution onA4.

By Debreu 1959, p. 83, & has an equilibrium, [p,(x;)]. By the strict
monotonicity of the function u;( - ,a), p(a) >> 0, for all a. Let 7 = [p(a)],
where p(a) = wg'p (a). pla) is well defined, since w, > 0, for all a (see
Assumption 2). I claim that [p, 5! — 1,(x;)] is a stationary equilibrium with
deflation rate 8~! — 1. First, 244 mop(a) « x{(a@) = Zgeq p(a) - x(a) =p - x, for
all x € R¥'41, Hence, the fact that [p,(x;)] is an Arrow-Debreu equilibrium
implies that for each i, x; solves the problem

(76) max {aéqm,u,-(x,a) I x € R4'4} and ag,A wep(a) - [x(a) — w(a)] = 0}_

Clearly, 7 is a stationary price system and (x;) is a feasible stationary
allocation. Hence, [7, 8! — 1,(x;)] is a stationary equilibrium with deflation
rate 8~ — 1.

Suppose that 8§ = 1 and that [p, 0, (x;)] is a stationary equilibrium with
deflation rate zero. I prove that (x;) is Pareto optimal. Let \; > 0 be the
Lagrange multiplier associated with the maximization problem (76). Recall
that the consumption program %; is defined by %;, (a,..., a;) = x; (a,), forall i,
n,and a,,..., a,. | must show that (%;) is Pareto optimal in the sense of (1). (%))
solves the first-order conditions of the social maximization problem
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amn max(i xi-lE{ 3 u [yin<sl,...,sn>,sn]}
i=1 n=1

(y;) is a feasible allocation)

for all values of N. For by the definition of A;,

u; [x; (an), ax)

(78) =\ pr(ay),forall k, i, n,and a,;

aZk

with equality if xj. (a,) > 0.

(78) gives the first-order conditions for a solution to (77). Since the objective
function of (77) is concave, it is sufficient to satisfy the first-order conditions.
Hence, () solves (77). This proves that (x;) is Pareto optimal.

Suppose now that 8 < 1 and that {p, 87! —1, (x;)] is a stationary equilib-
rium (with deflation rate §-! —1). The proof that (x;) is Pareto optimal is
exactly as in the previous paragraph, except that (77) and (78) become the
two formulas below:

max( lé,l Pty E{ él 8 1t [Vin (S15eney Sn), s,,]}

(y;) is a feasible allocation).

g duibalansand oy i (0 forallk, i, n, and ay;

Ozk
with equality if x;;. (a,) > 0.

13. An Example

The following example illustrates why special assumptions are needed in
Theorems 2, 3, and 4. In the example, the Markov chain {s,} is cyclic and
has two states. There are two consumers. One consumer has a relatively high
preference for consumption in one state, and the other consumer prefers
consumption in the other state. Therefore, there is a Pareto optimal alloca-
tion in which each consumer consumes the entire endowment of both con-
sumers when the preferred state occurs. [ call this allocation the alternating
allocation. 1 assume that no interest is paid on money.

At first | assume that the consumers’ rates of time preference are positive
and show that the alternating Pareto optimal allocation is the allocation of a
monetary equilibrium. Thus, Theorem 2 does not hold, and the example
justifies the assumption made in Theorem 2 that each consumer always con-
sumes something.

I next assume that each consumer’s rate of time preference is equal to the
interest rate, which is zero. In this case, the alternating Pareto optimal allo-
cation is still that of a monetary equilibrium, so that the optimum quantity of
money is finite. This is so even if the endowment functions are allowed to
vary over an open set. Hence, Theorems 3 and 4 do not hold, and the exam-
ple shows the need for Assumption 10 in these theorems.

I now describe the example. 4 = {a, b}. The transition probabilities are
defined by P,, = P,, = 0and P,, = P,, = 1. Thus, the stochastic process {s,}
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alternates between a and 5. The process starts at time 1 in state a with
probability 1/2 and in state b with probability 1/2. There are two consumers
and one good. The endowments are defined by w,(a) = w,(b) = wy(a) = wx(b)
= 1. The utility functions are defined as follows: u, (x, a) = uz (x,b) = 12 log
(1+x), where x is the quantity consumed of the good; u, (x,b) = 1, (x,a) = 3
log (1+x). The initial holdings of money are M, = M,, = 1/2. Money earns
no interest. Thatis, r = 0.

Suppose that 1/2 < §; < 1, fori = 1,2. I claim the following is a monetary
equilibrium. The price system p is defined by p, (a) = p, (b) = 1/2 and p, (a,,
..., a,) = 1, forall n > 1 and for all a,, ..., a,. The allocation (x,, x,) is defined
as follows. Forall nand a4, ..., a,,

2,ifa, =a

Xtn (@1y oees Q) = {0 ifa. =b

0,ifa,=a
Yo (@1, 205 Q) = {2 ifa =b

It should be clear for n = 1 that

0,ifa,=a
1,ifa, =5

1,ifa,=a
0,ifa, =

Mln (ala -'-1an) = {

Moy (ay,s -5 Gy) = {

In order to verify that the above is an equilibrium, it is enough to verify
that each consumer satisfies the first-order conditions for her or his optimi-
zation problem. Since the consumers are symmetric, [ need only deal with
consumer 1. It is easy to see that this consumer’s marginal utility of ex-

penditure, a; = [a, (@, ..., ax)], is as follows: a;, (a) = 8. a; (b)) = 2. If n >
1, then
_[4,ifa,=a
(2377 (alv A an) - { 1, ifan = b.

It follows easily that consumer 1’s marginal utility of money is as follows: A,
(a) =8.Ay (b) =48,.1f n> 1, then

4,ifa,=a

)\ln(al, vy an) = {481 lfa = b

Finally,
45,,ifa, =a
ENnsi(as, ..., any Spa1) | a, =al= {4 ;fa lb

It is easy to see that «; and A, satisfy conditions (8)—~(10). For instance, Ay, (a)
=8> 482 = §, E[\z (ay, 52) | @) = al, and My, (a) = 0. Also, ay, (b) =2 < 48,
= )\” (b) and X1 (b) = 0.

1t should be clear that the allocation (x,, x,) is Pareto optimal, even though
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the rate of interest is less than the rate of time preference. Hence, some
special condition is needed in Theorem 2.

Now suppose that 8§ = 8, = 1. Let the initial endowments satisfy the
condition 3/4 < w;(¢) < 5/4, for ¢ = a,b and i = 1,2. Let the endowment of
money and the utility functions be as before. I claim that [p, (x;, x2)] is a
monetary equilibrium where [p, (x,, x2)] is defined as follows: p, (a) = 2w,
(@)L p(b) = Ro, (B)I"L Ifn>1,

[w: ()] ifa, =a
[w, (D)), ifa, = b

w, (ay) + w3 (a,),ifa, =a
0,ifa, =5

pn(ay, ..., a,) = {

Xin (ah res an) = {

0,iffa,=a

Xon (@ ooy ) = {w, (an) + w3 (ay), if ay = b.

It is easy to verify that this allocation is Pareto optimal in the sense of (1).
Hence, Theorems 3 and 4 do not apply.
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