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Abstract

This paper presents a monetary business cycle model embodying arbitrary degrees of nom-
inal rigidities in goods and labor markets. Nominal rigidities are introduced in the form of
staggered contracts. The structural parameters of the model go through formal reconciliation
with data series via maximum likelihood estimation. The estimation results stand in favor of
wage stickiness, in the sense that i) average duration of contracts is longer in labor market;
and ii) nominal wage rigidities are crucial for the model’s performance in fitting actual U.S.
data.

1 Introduction

Over the recent years, there has been a multitude of attempts to construct monetary business

cycle models with persistent real effects of monetary disturbances. In particular, since the work

of Chari et al. (1998, 2000) questioned the candidacy of staggered price contracts for an effec-

tive propagation mechanism, many authors have tried to reinstate the contract multiplier as a

promising propagation channel generating real persistency of nominal shocks. Gust (1997) shows

that imperfect inter-sector capital mobility can increase persistence in the model of Chari et al.

(2000). Sharing the insight of Ball and Romer (1990), Kiley (1997) and Jeanne (1997) show that

increasing the degree of real rigidities also can increase persistence due to the nominal rigidities

in the model. Moving away from complete wage flexibility assumed in Chari et al. (2000), Erceg

(1997) shows how staggered wage setting jointly with staggered price setting can generate the

persistence observed in the data. Another possible resolution of the persistence puzzle suggested
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by Kim (2000 [15]): embedded in a dynamic business cycle model, Taylor style deterministic price

contracts adopted in Chari at al. (2000) exhibits an inherent nuisance feature (i.e., the initial over-

shooting of re-optimized prices following monetary shocks), while deterministic wage contracts or

Calvo (1983) style stochastic price/wage contracts are free of such anomalous implications. To

my best knowledge, the general picture around the staggered contracts is that the interplay of

price and wage contracts is a promising propagation channel for monetary disturbances, wage

stickiness being possibly the mightier.1

Developing a model which is in principle capable of generating realistic contract multiplier is,

however, only one half of the story, and the other half in order is the empirical validation of the

candidate model by examining how well its implications reconcile with actual data series. This

task has both positive and normative importance: being critical to whether real aggregates display

non-trivial and realistic responses to nominal shocks, the degree and sources of nominal rigidities

are needed to pin down to get a realistic snapshot of the economy. Furthermore, given empirically

supported degree of nominal rigidities and implied behavior of hours in the labor market, a vital

component in welfare analysis, i.e., the welfare of households, can be explicitly considered under

alternative of monetary policies.

This paper seeks to establish the positive results of the empirical validation. For that aim, I

formulate an otherwise standard monetary business cycle model, patch it up with arbitrary degree

of price and wage rigidities via staggered contracts, and estimate the structural parameters of the

model using maximum likelihood estimation method. The estimated model is used to investigate

i) whether reasonable degree of nominal rigidities are compatible with the observed behavior

of key U.S. macro aggregates, and ii) what mixture of nominal frictions are supported by the

empirical evidence from actual data series.2

Estimation results support higher degree of nominal rigidities in the labor market than in the

goods market. More specifically,the average durations of price and wage contracts are estimated

roughly as two and four quarters, respectively. Consistently with the existing results in the

1For example, Kim (2000 [15]) shows that Calvo style staggered price contracts with average price fixity of one
year generate only modest degree of real persistency, while wage contracts with the same degree of wage fixity are
capable of hump-shaped persistent responses of output following monetary expansions.

2The usage of maximum likelihood method gives this paper an advantage over a few recent works such as
Christiano et al. (2001) and Rotemberg and Woodford (1997, 1999). In those papers, parameters are esimated by
matching the model generated impulse responses with those from strucutural VARs, which are critically dependent
upon the validity of identification assumptions.
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literature, I also find that critical nominal friction in the estimated model is wage stickiness. In

fact, the constrained estimates without price rigidity generates the same qualitative features of

key variables as in the model fleshed out with the unconstrained estimates.

The paper is organized as follows. Section 2 presents the model where the impediments to

the adjustment of nominal prices and wages are specified in the form of staggered contracts. In

section 3, I discuss the method and data used to estimate the deep parameters of the model.

Section 4 is devoted to reporting the empirical results. Section 5 concludes the paper.

2 The Model

The economy constructed in this section is a variant of Yun (1998), Kim ([15], 2000) and Erceg

at al. (2000). The economy consists of three kinds of agents: households, firms, and government.

Firms are monopolistic competitors producing differentiated goods using capital and labor as in-

puts. Households purchase output for consumption and investment purposes, and supply capital

and differentiated labor. The government manages monetary policy by adjusting monetary in-

struments in response to the aggregate economic conditions, subject to its own period-by-period

budget constraint. In the spirit of Calvo (1983), nominal prices and wages are set according to a

stochastic staggering mechanism.

2.1 Households

I assume there are infinitely many immortal households indexed by i ∈ [0, 1], endowed with a fixed
amount of time usable for leisure or work each period. They hold two types of nominal assets,

moneyM and interest bearing government bond B, and one real asset, capitalK. Income is earned

from the capital and labor service they sell to firms and from the interest payment for government

debt holding. As shareholders of firms in the economy, households also receive dividend income.

When accumulating capital stock, households are subject to quadratic adjustment costs: in order

to make new capital operational, the households need to purchase additional materials in the

amount

ACk
it =

φK
2

·
Iit
Kit
− I

K

¸2
Kit, φK > 0 (1)

where Iit = Ki,t+1− (1− δt)Kit is the real investment spending, φK is the scale parameter for the

capital adjustment costs, and I
K
is the ratio of investment to existing capital stock in the steady
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state. The term δt denotes the stochastic decay rate of capital stock, which I call depreciation

shock. Its stochastic properties are specified later.

It is facilitating to interpret the household i’s decision making as a sequential one: household

i enters period τ with capital, money stock, and nominal government bond holdings carried

over form the previous period. In period τ , the household chooses its optimal wage rate to

charge, thereby determining its current labor income and working hours. Finally, the household

determines how to allocate its total disposable income to consumption, investment, and acquisition

of other nominal assets.

Household i derives utility by maximizing

Et[
∞X
τ=t

βτU(C∗iτ , Liτ ,Miτ/Pτ )] , 0 < β < 1

where the instantaneous utility function is given by the following form:

U(C∗it, Lit,
Mit

Pt
) =

³£
C∗it(1− Lit)

1−at¤1−σ − 1´ /(1− σ), 0 < a < 1, ν < 0 (2)

In equation (2), C∗t = (Cν
t + bt (Mt/Pt)

ν)
a
ν is the CES bundle of consumption Ct and real

money balance Mt/Pt. The stochastic properties of the money demand shock bt and the labor

supply shock at will be specified later.

The household’s budget constraint each period is

Ciτ +Ki,τ+1 − (1− δτ )Kiτ +
Miτ

Pτ
− Mi,τ−1

Pτ
+

Biτ

Pτ
− Bi,τ−1

Pτ
+ACk

iτ (3)

≤ WiτLiτ

Pτ
+

ZτKiτ

Pτ
+ Tiτ +

R
sijΓjτdj

Pτ
+
(Rτ−1 − 1)Bi,τ−1

Pτ
, τ ≥ t

where sij is household i0s share of the firm j which is assumed to be fixed, and Γj is the

profit of firm j. The LHS of equation (3) denotes the usage of disposable income, comprising i)

consumption Ciτ ; ii) investment Ki,τ+1 − (1− δτ )Kiτ , iii) acquisition of new real money balance
Miτ−Mi,τ−1

Pτ
and nominal bonds Biτ−Bi,τ−1

Pτ
; and iv) capital adjustment cost ACk

iτ . The RHS denotes

the sources of disposable income, such as i) labor incomeWiτLiτ ; ii) capital rental income ZτKiτ ,

iii) the lump-sum government transfers Tiτ ; iv) profit dividend
R
sijΓjτdj; and v) the interest

income from previous period’s bond holding Bi,τ−1(Rτ−1 − 1). Note that Rτ−1 is the gross

nominal interest rate between period τ − 1 and τ .
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Suppose the current period’s individual wage rate Wiτ has already been determined. Then

first order conditions for (Cit,Mti,Ki,t+1, Bit) are given by

∂Uit

∂Cit
= Λit (4)

1−Rt
−1 = b(Cit/RMit)

1−ν (5)

Λit

·
1 +

∂ACk
it

∂Ki,t+1

¸
= βEt [Λi,t+1(RZt+1 + 1− δt+1)]− βEt

"
Λi,t+1

∂ACk
i,t+1

∂Ki,t+1

#
(6)

0 =
Λit
Pt
− βRtEt

·
Λi,t+1
Pt+1

¸
(7)

where RMit is the real money balance held by household i, RZt is the real rental price, and Λit

the Lagrangian multiplier on the household i’s budget constraint, interpretable as the value of

one unit of consumption good.

To understand the Euler equation (6) for capital stock, consider the following experiment:

suppose that, at period t, the household i decreases its consumption by one unit, thereby increasing

capital holding in the next period, and sells the remaining capital at the end of period t+1. Then,

the LHS of equation (6) measures i) the utility value the consumption foregone, plus ii) that of

the increase in the capital adjustment cost paid to increase capital stock in the next period. In

the RHS, the first term denotes the utility value of i) the remaining capital after depreciation,

plus ii) that of the decrease in the capital adjustment cost at period t+ 1 due to higher level of

period t + 1 capital stock. So the equation (6) is interpreted as an arbitrage condition between

the current and future consumption.

2.1.1 Wage Setting

As a supplier of differentiated labor service, each household is a wage setter and satisfies the

quantity of its own labor demanded at its individual wage rate posted. As is standard in the

literature, we assume that the demand function for Li, the labor service supplied by household i,

is of the Dixit-Stiglitz form

Lit = (
Wit

Wt
)

1
θL−1Lt (8)

where θL ∈ [0, 1] measures the degree of household i0s market power over its own labor service,

Wit is the wage set by the household i, Lt is the aggregate labor demand. In the labor market

equilibrium, the total labor demand Lt is in turn equal to the aggregate labor supply (
R
L
θL

it di)
1
θL ,
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the CES index constructed from differentiated labor service. The aggregate wage rate Wt is in

turn defined as

Wt = (

Z
W

θL
θL−1

it di)
θL−1
θL . (9)

Households set wages according to a variation of the mechanism in Calvo (1983). In each period

t, a randomly chosen 1−φL fraction of households, denoted by opt(t), are able to reoptimize their
individual nominal wages. The other φL fraction of households, denoted by rev(t), are assumed

to reset their wages according to an index rule

Wit = Π
ω
t−1Wi,t−1, i ∈ rev(t) (10)

where Πωt−1 is the actual wage inflation rate in the last period.3 Therefore, even if a household is

able to reoptimize in the current period t, current wage decision continues to affect its utility in

future period τ ≥ t with geometrically decaying probability φτ−tL .

The First order condition for optimal wage setting for a household i ∈ opt(t) is:

−Et

" ∞X
τ=t

(βφL)
τ−t ∂Uiτ

∂Liτ

dLiτ

dWit

#
= Et

" ∞X
τ=t

(βφL)
τ−t Λiτ

Pτ

µ
Liτ

dWiτ

dWit
+Wiτ

dLiτ

dWit

¶#
(11)

where Uiτ , Liτ ,Wiτ , and Λiτ all depend on Wit via equations (2) and (8). Equation (11) requires

the optimal wage equate the present discounted value of marginal disutility from work and that

of real wage income measured in utility terms through the Lagrangian multiplier Λiτ ,∀τ ≥ t.

Under the assumption that all households in opt(t) set the same wage rate W ∗
t , equation (4)

and equation (11) yield the following wage setting condition:

aθLEt

" ∞X
τ=t

(βφL)
τ−tC∗a(1−σ)−1iτ Cν−1

iτ

µ
1− ('tΠ

ω
t

Πωτ
)

1
θL−1Lτ

¶(1−at)(1−σ)
RWτ (

'tΠ
ω
t

Πωτ
)

θL
θL−1Lτ

#

= Et

" ∞X
τ=t

(βφL)
τ−t (1− aτ )C

∗a(1−σ)
iτ

µ
1− ('tΠ

ω
t

Πωτ
)

1
θL−1Lτ

¶(1−at)(1−σ)−1
(
'tΠ

ω
t

Πωτ
)

1
θL−1Lτ

#
(12)

where 't = W ∗
t /Wt is the optimal wage rate relative to the aggregate, and RWt = Wt/Pt is the

aggregate real wage.4

3This “backard-looking” indexation scheme is also used in Christiano et al. (2001) to achieve higher persistence
in both price level and inflation rate.

4See Kim (2000) for the conditions under which the optimal wage rate for optimizing households are identical.
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2.2 Firms

There are infinitely many monopolistically competitive firms indexed by j ∈ [0, 1], having access
to the identical CRS production technology

Yjt = AtK
αt
jt (g

tLjt)
1−αt (13)

where Kjt and Ljt are the quantity of capital composite labor input, respectively, used by firm

j. By assuming g ≥ 1, we allow all real variables of the model(except L) to have deterministic
balanced growth paths. The stochastic properties of the aggregate productivity shock At and the

capital share shock αt are detailed later.

A firm j is assumed to solve its profit maximization problem through two steps. First, given

its desired output level(determined by its relative price and aggregate output) and factor prices,

the firm solves a cost minimization problem. Second, given the cost function thus derived, it

determines optimal price by solving the following profit maximization problem:

maxEt

· ∞P
τ=t

βτ−t
Λτ
Λt

µ
PjτYjτ
Pτ

− MCτ

Pτ
Yjτ

¶¸
(14)

where MCt = A−1t Zαt
t W 1−αt

t (1 − αt)
αt−1α−αtt is the marginal cost, and βτ−tΛτΛt is the common

discount factor for real profit between period τ and t, with Λt =
R
Λitdi is the average marginal

utility of consumption for all households.5

The FOCs for cost minimization are summarized by the following two equations:

Ljt

Kjt
=

Zt

Wt

1− αt
αt

, j ∈ [0, 1] (15)

MCτ

Pτ
=

RWt

MPLt
(16)

where MPLt is the marginal productivity of labor, which is identical for all firms due to the CRS

production function.

2.2.1 Price Setting

Analogously in the labor market, I assume that the demand function for firm j’s output Yjt is of

the Dixit-Stiglitz form, and that the firm is obliged to set its product supply equal to demand:

Yjt = (
Pjt
Pt
)

1
θY −1 Yt (17)

5See also Kim (2000) for the discussion on the common discount factor across firms.
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where θY ∈ [0, 1]measures the degree of firm j0s market power over its own product, Pjt is the price

of the individual firm j’s product, Yt is the aggregate demand by households. In goods market

equilibrium, the total output demand Yt is in turn equal to the aggregate supply (
R
Y

θY

jt dj)
1
θY ,

the CES index constructed from differentiated products. The aggregate price level Pt is in turn

defined as

Pt = (

Z
P

θY
θY −1

jt di)
θY −1
θY (18)

Nominal rigidity in the goods market is formulated as in the labor market: In each period t, a

randomly chosen 1−φY fraction of firms, denoted by opt(t), are able to reoptimize their individual
nominal prices. The other φY fraction of firms, denoted by rev(t), are assumed to reset their prices

according to an index rule

Pjt = Πt−1Pj,t−1, j ∈ rev(t) (19)

where Πt−1 is the actual aggregate inflation rate in the last period. Therefore, even if a firm is

able to reoptimize in period t, its current price decision continues to affect profit in period τ ≥ t

with probability φτ−tY .

Using equation (17) and (19), I derive the following FOC for a firm j ∈ opt(t) to set its optimal

price:

ψtEt

 ∞P
τ=t
(βφY )

τ−t Λτ
Λt

µ
Πt
Πτ

¶ θY
θY −1

Yτ

 = 1

θY
Et

"
∞P
τ=t
(βφY )

τ−t Λτ
Λt

µ
Πt
Πτ

¶ 1
θY −1 RWτ

MPLt
Yτ

#
(20)

where ψt = P ∗t /Pt is the optimal price relative to the aggregate.6

2.3 Government

The behavior of government is described by its own budget constraint and monetary policy equa-

tions. The government is assumed to maintain balanced budget every period by financing the

total lump-sum payment to households with the seigniorage gain and issuance of net debt:

Tt =Mt −Mt−1 +Bt −Rt−1Bt−1 (21)

where Tt =
R 1
0 Titdi, Mt =

R 1
0 Mitdi, and Bt =

R 1
0 Bitdi.

6Unlike in equation (12), the two expectational terms in equation (20) do not have the firm index j. Therefore,
the optimal price set each period is common to all firms.
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Monetary policy is specified as a generalized feedback rule of Taylor (1993)

log
Rt

R
= ρR log

Rt−1
R

+ (1− ρR)

·
γπ log

Πt

Π
+ γy log

Yt

Y t

+ γm log
MGt

MG

¸
+ εRt, 0 < ρR < 1 (21)

where R is the gross nominal interest rate, MG is the growth rate of nominal money, R is the

steady state gross nominal interest rate, all in the steady state. Πt is the rate of gross inflation

rate between period t−1 and t, and Y t is the deterministic level of output at period t, respectively.

Π is the long-run “target” level of inflation rate.7 The monetary policy disturbance εMt is a white

noise with mean 0 and variance σ2ε and independent of all other disturbances in the model.

I now discuss the stochastic structure of the model. I put the economy subject to six structural

disturbances. More specifically, beside the monetary policy disturbance εRt, the model is driven

by stochastic evolution of five shocks (At, αt, δt, bt, at),each of which follows a stationary AR(1)

in logarithmic form

log
χt
χ
= ρ1 log

χt−1
χ

++εχt (22)

where χ is the steady state level of χt, and εχt is a white noise with mean 0 and variance σ2χ. I

allow the innovations in At and αt, the two productivity shocks, are correlated with each other

but uncorrelated with those in (δt, bt, at). Innovations is the latter three shocks are uncorrelated

with one another.

The final equations completing the model are those for the evolution of aggregate price and

wage rate. In a symmetric equilibrium, they evolve as

P
θY

θY −1
t = (1− φY )P

∗ θY
θY −1

t + φYΠt−1P
θY

θY −1
t−1 (23)

and

W
θL

θL−1
t = (1− φL)W

∗ θL
θL−1

t + φLΠ
ω
t−1W

θL
θL−1
t−1 . (24)

In what follows is focused on a particular symmetric equilibrium in which i) all firms (or house-

holds) in opt(t) set the same optimal price (or wage); and ii) all households make identical decision

on (C,K,M,B). In such a equilibrium, most of the model’s real and nominal variables inherit

deterministic trends due to the constant rate of labor -augmenting technical progress (g) and the

7Since output and price have deteministic trends, their steady state values grow at constant rates. See footnote
(12) and Appendix for further discussion.
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“target” inflation rate of the monetary authority.8 By dividing each variable by its determinis-

tic gross rate of growth, I make the system stationary. We use lowercase letters for stationary

transformed variables. For example, the output, price, and wage rate are transformed as:

yt = Yt/g
t, pt = Pt/Π

t
, wt =Wt/

¡
Π
ω¢t

.

Equations describing the stationary-transformed symmetric equilibrium in the model are given in

the Appendix.

3 Methodology and Data

3.1 Maximum Likelihood Estimation

If log-linearized around the deterministic steady state, the stationary-transformed system is cast

into the form

G0d log xt = G1d log xt−1 +G2εt +Ψηt (25)

where dlogxt = log xt − log x, and xt is the n-dimensional vector of starionary-transformed

system variables. εt is the vector of innovations in exogenous disturbances, and ηt is a vector of

endogenous errors satisfying Et−1ηt = 0. The matrices (G0, G1, G2) of the derivatives of G(·, ·, ·)
are with respect to log xt, log xt−1, and εt, respectively, evaluated at the steady state.

The log-linearized system (25) is solved using the method by Sims (2000). If there exists a

unique equilibrium, the solution takes the form

d log xt = F1d log xt−1 + F2εt (26)

where F1 and F2 are complicated matrix functions of the model parameters.

If equation (26) is seen as a transition equation for the “state” variable xt, constructing

likelihood functions is a straightforward application of Kalman filtering. With a selection matrix

H that singles out of the observables out of the state vector xt, I have the following state-space

representation:

transition equation : d log xt = F1d log xt−1 + F2εt, εt v iiN(0,Σε)
observation equation : d log zt = Hd log xt

(27)

8 In more detail, in the steady state i) Y, K, and C grow at a rate of g; ii) P and Z grow at a rate of Π; iii) M
and W grow at a rate of Πg; and iv) Λ grows at a rate of g−1+a(1−σ). All other variables, including R and L, are
constant in the steady state.
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where zt denotes the variables corresponding to the observable data series and Σε is the (block

diagonal) covariance matrix of the innovations. The Gaussian likelihood function for the entire

parameter vector Θ is constructed as

LT (Θ | z1, ..., zT ) = −1
2

TP
t=1
log |t−1Σzt (Θ)|

−1
2

TP
t=1
[d log zt −t−1 d log zt(Θ)]0 [t−1Σzt (Θ)]−1 [d log zt −t−1 d log zt(Θ)] (28)

where t−1d log zt(Θ) and t−1Σzt (Θ) are one step ahead forecasts of mean and variance of d log zt,

respectively.9 The likelihood function in equation (29) is maximized over the whole parameter

set Θ. The asymptotic standard errors of the estimates are computed from the Hessian matrix of

the log-likelihood function evaluated at the estimates.

Other than the economic restrictions on a few parameters imposed above, maximization of

(29) over the parameter set Θ requires one to cope with the parameter regions in which i) the

candidate value of θ ∈ Θ yield nonsensical (mainly negative) steady state values of the variables;
and ii) the model does not have a unique equilibrium. The usual constrained optimization routines

cannot be used to deal with such nonstandard situations, because the implied restrictions cannot

be written in analytic forms. As in Leeper and Sims (1994), I assign an arbitrary low likelihood

value to parameters in such bad regions, and the resulting discontinuity in the likelihood function

is addressed by a “cliff-robust” optimization routine written by Sims.10

Another issue around constructing the likelihood function is how to initialize the Kalman

filter. I assume that the initial information set is null, and therefore the initial one step ahead

forecasts of mean and variance of d log z1 are equal to the unconditional expectation and variance:

0d log z1 = E [d log z1] = 0, t−1Σzt = var [d log z1] = HΣxH 0

where Σx is the unconditional variance of d log xt determined by the Lyapunov equation

Σx = F1ΣxF
0
1 + F2ΣεF

0
2 .

9More specifically, the evolution of
³
t−1 \d log zt,t−1 Σz

t

´
is summarized as follows:

td log xt+1 = F1t−1d log xt + F1Kt(d log zt −H t−1d log xt) ,
td log zt+1 = H td log xt+1,

tΣ
x
t+1 = F1(I −Kt)t−1Σx

t F
0
1 + F2ΣεF

0
2,

tΣ
z
t+1 = HtΣ

x
t+1H

0,

where Kt =t−1 Σx
tH

0(Ht−1Σx
tH

0)−1 is the time-varying Kalman gain matrix.
10The routine is csmiwel.m written in a Matlab M-file.
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3.2 Preliminary Calibrations and Data

Since the data series bears little information about some structural parameters, they are fixed

before estimation: steady state values of capital share α and depreciation δ are fixed at 1/3

and 0.025, respectively. The market power θY in the goods market is fixed at the conventionally

calibrated value of 0.9, because only two of (A, θY , θL) are identified from the series on output and

labor. Assuming the Fed has been successfully managed the inflation rate around its “target” level,

I fix the steady state inflation rate Π at its actual average 1.01005 over the sample period. The

CRRA parameter σ is fixed at 1, which amounts to a logarithmic instantaneous utility function.

Two parameters (ν, b) are of particular interest, because they jointly determine the form of

money demand or equivalently the transaction technology.11 Figure 1 illustrates how. In the upper

panel are drawn the isovelocity curves, on which two parameters (ν, b) yield constant consumption

velocities of money V = PC/M in steady state. The isovelocity curves are defined by

V = b
1

ν−1 (1−R
−1
)

1
1−ν (8’)

given the level of nominal rate R. Among the three isovelocity curves in Figure 1, the one with

V =1.1321 is drawn for the actual average velocity over the sample period. The arrow denotes

the particular point on that isovelocity curve corresponding to the estimates of (ν, b) reported in

Table 1.

The positive slopes of the isovelocity curves are interpreted as follows: suppose ν increases

form a point on an isovelocity curve. Higher ν makes consumption and real balance more substi-

tutable, and leads to lower money demand and higher velocity. Such increase in velocity should

be counteracted by higher value of money demand parameter b.

The lower panel plots transaction costs TC =
h
1− b

b+V

i 1
ν , evaluated along the isovelocity

curves in the upper panel.12 Note that in the neighborhood of the estimated (ν, b), transaction

costs are close to 1, implying that transaction costs, or the components of them that can be

11As discussed in Feenstra (1986), exactly the same model can be described in terms of transaction costs approach:
one can redefine C∗ in the utility function (2) as the usual consumption and replacing C in the budeget constraint
(3) with

C∗∗ = C∗ ×
·
1− b

µ
M/P

C∗

¶ν¸ 1ν
where C∗∗ represents the gross spending on consumption inclusive of (multiplicative) transcation costs. Note that
the tranasaction costs are increasing in consumption velocity.
12More specifically, TC represents C∗∗/C∗ in footnote 10.
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eliminated by saturating the economy with nominal money is a very small fraction of total output.

The positive slopes of transaction cost curves reflect higher money demand needed to maintain

constant velocity for higher levels of ν. It is also displayed that, for a fixed ν, higher velocity leads

to higher transaction cost or equivalently, greater level of money demand parameter b.

The monotonicity of the relation between (ν, b) along an isovelocity curve is utilized to im-

plement estimation and calibration jointly. More specifically, at each step of maximizing the

likelihood function, b is determined as

b = (1−R
−1
)V ν−1

d (8”)

given all other candidate parameters, where Vd is set equal to the actual average velocity over the

sample period.

The raw data used in this study are extracted from DRI BASIC economic series for the sample

period 1959:Q1-1999:Q3.13 Since two main feature of the model are i) the nominal rigidities in

goods and labor markets; and ii) interest rate feedback rule for monetary policy, it is imperative

to examine the data on monetary aggregates as well as prices and quantities in goods and labor

markets. Therefore, the following six series are used for the actual estimation purpose: per capita

output (Y ), per capita labor hours(L), rate of price inflation (Π), the growth rate of per capita

money balance (MG), interest rates (R), and wage inflation rates (Πw). To express the data series

conformable with the theoretic counterparts in the model, per capita output and money balance

are obtained by dividing GDP and M2 balance, respectively, by population size. Per capita labor

hours are obtained by dividing weekly working hours by 120, under the assumption that each

worker is endowed with 5 working days per week. The resulting series imply households devote

33.8% of their time endowment to working. Since federal funds rates are measured in annual

percentage rates, I transform them into quarterly rates by dividing by 400 and adding one. Price

and wage inflations are obtained by log-differencing the price and wage series. The resulting six

13All series, except for interest rate and wage, are seasonally adjusted.

output : gross domestic products, billions of 1992 dollars.
employment : average weekly hours of production workers in manufacturing sector.
price : implicit price deflator for gross national products.
money : M2 stock, billions of current dollars.
interest rate : federal funds rate, per annum.
wage : index of compensation per hour in nonfarm business sector, 1982=100.
population civilian population, in thousands.
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series are plotted in Figure 2, against their estimated steady state levels.

4 Empirical Results

4.1 Benchmark Estimates

Table I reports the functional forms of the model equations and the maximum likelihood estimates

of parameters, whose standard errors are given in parentheses.14The growth rate g of the real

output is 1.0056, which is higher than the actual average growth rate of output 1.0050 over

the sample period. The estimate 0.9986 of discount factor β is sharply estimated with standard

deviation 0.0003. The estimate of β is higher than the calibrated value 0.9898 of Chari et al.(2000),

but comparable to the estimate 0.999 of Kim ([16], 2000) for 1959:Q1-1995:Q1 period. The

share a of consumption bundle C∗t in the instantaneous utility function is 0.4681, higher than

the conventionally calibrated value of 0.4. The estimate -22.7561 of ν is much higher than the

estimate -7.4459 of Ireland (2001) for 1979:Q3-1998:Q4. The estimate of b is 0.0008, giving a very

small weight on real balance in the utility function.

The market power θL of households in the labor market is 0.6888. It is lower than the estimate

0.8821 of Amato and Laubach (1999) and the calibrated value 0.75 of Huang and Liu (1999). The

estimate 16.8465 of capital adjustment cost φK shows a considerable degree of real rigidity in the

economy. More specifically, setting off the estimated steady state, the transformation of one unit

of consumption good into the same unit of working capital requires additional 0.0680 units of

additional output.

The parameters for the monetary policy rule show the systematic manipulation of monetary

aggregates in response to inflation, but not to output over the sample period. The estimate

ρR = 0.1395 implies a small degree of policy inertia, compared with Rotemberg and Woodford

(1999) and Woodford (1999).15

I now turn to the estimates of nominal rigidity parameters. The degree of nominal rigidities

in the labor market (φL = 0.7333 is higher than that in the goods market (φY = 0.4052) :

the resulting expected duration of wage and price fixities are 3.75 quarters and 1.68 quarters,

14Standrad erors are computed from the Hessian of the likelihood function, evaluated at the maximum likelihood
estimates.
15 In the context of generalized Taylor rule in which interest rate depends upon its lags as well, Woodford (2000)

shows that small but persistenct changes in short-term interest rates in response to shocks constitute an optimal
policy, because such inertial responses allow a larger effect of monetary policy on long rates and aggreagte demand,
for a given degree of overall interest rate variability.

14



respectively. Both parameters are precisely estimated with respective standard deviations 0.0297

and 0.0234.

Regarding the structural disturbances, the estimated AR(1) coefficients show the economy

has been subject to highly persistent structural shocks. Except for the labor supply shock, the

half-lives of the aggregate shocks are around 6 years. The labor supply shock at exhibits negative

serial correlations. Finally, the innovations in the shocks At and at are negatively correlated with

correlation coefficient -0.9775. One “structural” interpretation for this negative correlation can

be drawn from Christiano et al. (2001) who assume variable capital utilization: in the pres-

ence of cyclical capital utilization, positive productivity shock will increase the effective marginal

productivity of labor, and leads to higher amount of labor employed.

In view of the VAR structure of the linearized solution of the model in (26), the likelihood

function has a straightforward interpretation as a measure of the mean squared errors of forecasts.

Therefore, by comparing the likelihood values, one can assess the fit of the estimated model relative

to unrestricted VARs fitted to the same data. In Table 2A, the likelihood value of the estimated

model is compared with those of two VARs with constants of order 1, one with time trend and

the other without it.16

The likelihood values of the model at the best fit is 4328.2055, quite a bit lower than the

4749.3752 and 4724.6128 of the VARs with and without trend, respectively. Since the two VARs

in this case have 69 and 63 free parameters compared with 25 for the model, it would be worthwhile

to see how the model’s fit compares to those of the VARs against the Schwarz criterion

BIC = LT (bΘ | z1, ..., zT )− p

2
log T (29)

where p denotes the number of estimated parameters. As shown in the lower panel of Table 2A,

however, the fit of the model leaves plenty of room of improvement even in this criterion. For

example, despite being penalized for the additional 44 parameters, the VAR with trend yields the

BIC of 4574.4980, much higher than the 4264.8442 of the model.

Another way to examine the estimation results is to compare the means and standard devia-

tions for the observed series with those predicted by the model, as reported in Table 2B. Setting

aside the inflation rate whose steady state level is preset equal to the data average, the estimated

16To allow a more direct comparison, I calculate the unconditional likelhood values of the two VARs, using the
impled unconditional distributions for the initial observations.
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steady states of the other five variables closely match their sample averages.17The main differ-

ences are in the second moments: for examples, the model overpredicts the standard deviations

of output and labor hours by factors of 1.81 and 1.93, respectively.18

To illustrate how the estimated model works, Figure 2 displays the impulse response functions

of the estimated model toward unit increase in monetary policy shock. Following such expansion-

ary nominal shock, money stock increases and nominal interest rate decreases initially as displayed

in panel (g) and (h). The real economy is boosted up, yielding about 2% initial increase in output

in panel (a) beyond steady state level. The “built-in” stabilization tendency of the monetary

policy rule, however, pushes the real output back toward its steady state level 4 quarters after

the shock. This feature is also reflected in the responses of interest rate in panel (h), where the

initial hike in the interest rate is almost completely dampened out in less than one year.

In Panel (c) and (e), price and wage display gradual adjustments to their new steady state

levels, even if the money stock shows considerable initial hike followed by fast adjustments to

steady state level. The nominal rigidities in goods and labor markets exhibit themselves in initial

increases followed by slow dampening in the price and wage inflation rates in panel (d) and (f),

respectively. As expected from the higher degree of nominal rigidity in the labor market, nominal

wage shows more sluggish adjustment after the shock, both in level and growth rate, than does

nominal price. Such a naive interpretation may be misleading, however, because the monetary

feedback rule has price inflation as an indicator, forcing faster adjustment of price inflation.

Therefore, as in Chari et al. (2000), I also consider the effects of unit increase in money growth

shock.19 The dashed lines in panel (d) and (f) represent the responses of price and wage inflation

toward such shock: the hump-shaped responses of wage inflation is more pronounced under this

shock. I hereby conclude more sluggish adjustments in wage rate are not merely due to the specific

form of monetary policy rule considered.20

17 In calculating data counterparts, output series is stationary transformed via its average growth rate.
18 In a calibration exercise, Ellison and Scott (2000) critcize this “overvolatility of output” as a failure of staggered

price contracts in replicating typical business cycle fatures.
19More specifically, I consider the following monetary policydMGt = 0.57dMGt−1 + εt .

20 It is in order to note that higher degree of wage rigidity than of price rigidity yields weakly contercyclical
repsonses of real wage, as criticized by those who favor staggered price contracts to wage contracts.
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4.2 Which Rigidity?

The general picture that emerges from Table 1 and Figure 2 is consistent with the consensus

that wage stickiness is crucial in generating real persistence of monetary disturbances. To assess

how strongly the “dominance” of wage rigidity is supported by the data, two exercises are done

below: First, I set φY = 0 in the estimated version of the benchmark model and see if there are

significant qualitative difference in the impulse response functions. Second, I re-estimated model

parameters subject to the constraint of φY = 0, and examine the point estimates and implied

impulse responses.

Figure 3 displays the impulse responses where φY is set to be 0 and other parameters are

held at their benchmark estimates. As expected, the qualitative features of the benchmark model

is preserved, while i) the initial hikes in output and money stock are less conspicuous; and ii)

inflation and price level shows higher initial hikes and faster adjustment due to complete price

flexibility. Interestingly, the responses of nominal wage and its growth rate are not sensitive to

such change in φY . As shown in panel (b), however, the countercyclicality of real wage is more

conspicuous because wage stickiness is now the only source of nominal rigidity.

Table 3 reports the parameters re-estimated under the restriction φY = 0. In fact, the es-

timation results in Table 1 and Table 3 shows that the price rigidity parameter φY is statisti-

cally significant: it has a significant t−value in Table 1, and the likelihood ratio test statistic is
2×(Lu−Lc) =2×(4328.2005-4296.5478)=63.3054> χ2(1, 0.01) = 6.63. It is worth noting, however,

that the estimates in Table 3 are as a whole robust to the alternative specification of the goods

market nominal rigidity, with some increase in the estimate of φL. The now higher estimate of φL

is intuitively sensible, because the restriction will shift part of the goods market rigidity to labor

market. It is worth noting that the increase in φL is less than half of the decrease (to 0) in φY

: as shown in Kim (2000 [15]), given the same degree of average durations, wage contracts yield

higher degree of nominal rigidities than price contracts, because the former directly dampens the

incentive to raise individual prices set by firms while the latter controls only the degree by which

the increase in marginal costs are passed on to the re-optimized prices.

The impulse responses in Figure 4 reflects the robustness of the estimates with respect to the

restriction: as a whole, the qualitative features in Figure 2 and 3 are preserved. Taken as a whole,

the statistical significance of φY does not imply its economic significance of equal magnitude.
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5 Conclusion

In this paper, I address the question of how much and what kind of nominal rigidities are supported

by the U.S. aggregate economy. For that purpose, I present and estimate a general equilibrium

model embodying nominal rigidities in both price and labor markets in the form of staggered con-

tracts. The estimation results suggest that reasonable amounts of nominal rigidities are compatible

with real economy, and that stickiness in nominal wages is crucial for the model’s performance.

Stickiness in prices plays a relatively minor role in fitting the model with actual data.

The formally estimated snapshot of the aggregate economy is indispensable for further re-

search. For one thing, welfare levels under alternative monetary policy rules can be evaluated

at the formally estimated structural parameters. In particular, the estimated functional form of

households’ utility function can be used as a natural welfare metric. This research topic is pursued

in a sequel of this paper.
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7.1 Steady States

The deterministic steady states of the stationary transformed model are given below. To save

space, we define βg = βga(1−σ)−1 and δg = g − 1 + δ.

R = Πβ−1g (30)

rz = β−1g − 1 + δ (31)

k

y
= θyα

·
z

p

¸−1
(32)

c

y
= 1− k

y
[g − 1 + δ] (33)

k/L =

·
A
k

y

¸ 1
1−α

(34)h c
c∗
iν
=

cν

cν + b× rmν
=

1

1 + b
1

1−ν (1− 1
R)

ν
ν−1

(35)

L

1− L
= θY θL(1− α)

a

1− a
D

·
c

y

¸−1
(36)

w

p
=
1− a

a

c

θY

c

1− L

h c
c∗
i−ν

(37)

y = L×A
1

1−α
·
k

y

¸ α
1−α

(38)

c =
c

y
y, k =

k

y
k, rm = b

1
1−ν (1− 1

R
)

1
ν−1 × c (39)

mrs =
1− a

a

1

1− L
Cν−1(Cν + bRMν) (40)

Note that three parameters (θY , θL, A) in equations (32), (36), and (38) are underidentified

because, given other parameters, they jointly determine the steady state level output and labor.
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7.2 Equations Describing an Equilibrium

The stationary-transformed version of the households’ block of the system is given below. For

notational simplicity, we define two variables : xt =
h
gkt
kt−1 − 1 + δt−1 − δg

i
and βL = βφLg

a(1−σ)

λt :=

Z
[0,1]

λitdi = a[cνt + bt (mt/pt)
ν ]

a−aσ−ν
ν cν−1t

Z
[0,1]
(1− Lit)

(1−at)(1−σ)di (41)

1− (1 +Rt)
−1 = bt(ct/rmt)

1−ν (42)

λt [1 + φKxt+1] = βgEt

½
λt+1

·
1− δt+1 + rzt+1 − φK

2
x2t+2 + φK

gkt+2
kt+1

xt+2

¸¾
(43)

λt
pt
=

βg

Π
RtEt

λt+1
pt+1

(44)

aθLEt

" ∞X
τ=t

(βL)
τ−t c∗a(1−σ)−1iτ cν−1iτ

µ
1− ('tΠ

ω
t

Πωτ
)

1
θL−1Lτ

¶(1−at)(1−σ)
rwτ (

'tΠ
ω
t

Πωτ
)

θL
θL−1Lτ

#

= Et

" ∞X
τ=t

(βL)
τ−t (1− aτ )c

∗a(1−σ)
iτ

µ
1− ('tΠ

ω
t

Πωτ
)

1
θL−1Lτ

¶(1−at)(1−σ)−1
(
'tΠ

ω
t

Πωτ
)

1
θL−1Lτ

#
.(45)

The corresponding firms’ block of the system is reported below. For notational simplicity, I

define βY = βφY g
a(1−σ) :

yt = Atk
αt
t L1−αtt (46)

Lt =
1− αt
αt

zt
wt

kt (47)

ψtEt

 ∞P
τ=t
(βφY )

τ−t λτ
λt

µ
Πt
Πτ

¶ θY
θY −1

yt

 = 1

θY
Et

"
∞P
τ=t
(βY )

τ−t λτ
λt

µ
Πt
Πτ

¶ 1
θY −1 rwτ

mplt
yτ

#
. (48)

After combining the budget constraint of households, aggregate profit of firms, and the gov-

ernment budget constraint, we get the following resource constraint :

ct + gkt+1 − (1− δt)kt +
φK
2
x2t+1 = yt (49)

Stationary transformation of the monetary policy rule equation is done as follows: I define the

gross rate of growth in money stockMGt =Mt/Mt−1, which is in itself stationary. Then assuming
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the hypothetical zero-th period observations on output is equal to its steady state level of the

stationary transformed output, the stationary transform of the monetary policy rule is given by

log
Rt

R
= ρM log

Rt−1
R

+ (1− ρM)

·
γΠ log

Πt

Π
+ γm log

MGt

MG
+ γy log

yt
y

¸
+ εMt . (50)

Equations (24) and (25) for the evolution of aggregate price and wage are transformed into

1 = φY

·
Πt−1
Πt

¸ θY
θY −1

+ (1− φY ) [ψt]
θY

θY −1 , 1 = φL

·
Πωt−1
Πωt

¸ θL
θL−1

+ (1− φL) ['t]
θL

θL−1 . (51)

The aggregate real wage evolves as

g
rwt

rwt−1
=
Πωt
Πt

. (52)

Equations for stochastic disturbances, stationary in themselves, complete the system.

7.3 Log-linearization of equation (45) and (48)

I discuss the log-linearized version of equations (45) and (48) only, since other equations are

straightforward to lo-linearize.21

Log-linearizing equation (45) and arranging terms, I get

Ξb't = (1− βL)Et

nP∞
τ=t β

τ−t
L

h
(dmrst − crwt)− Ξ

³bΠωt − bΠωτ ´io (53)

where

dmrst = (1− ν + ν
c

c∗
)bct + ν(1− c

c∗
)crmt + (1− c

c∗
)bbt

+
L

1− L
bLt − a

1− a
bat (54)

is the log-linearized marginal rate of substitution between consumption and labor(−∂Ut/∂Lt
λt

), and

Ξ = 1 + 1
1−θL

L
1−L .

The law of motion for aggregate wage rate in (51) is log-linearized as

b't =
φL

1− φL

³bΠωt − bΠωt−1´ (55)

Combining (53) and (55), I get

Ξ(
φL

1− φL
+ βL)bΠωt = Ξ(

φL
1− φL

)bΠωt−1 + (1− βL)Et

©P∞
τ=t β

τ−t
L [(dmrst − crwt)]

ª
(56)

+(1− βL)Et

nP∞
τ=t+1 β

τ−t
L ΞbΠωτ o (57)

21Refer to see Kim(2000) for detailed discussion on other equations.
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Using the law of iterated projection, it is straightforward to show

Ξ
φL + βL
1− φL

bΠωt = ΞβL 1

1− φL
Et
bΠωt+1 + φL

1− φL
ΞbΠωt−1 + (1− βL) [dmrst − crwt] (58)

which is the final equation to use for solving the linearized model.

Similar steps with equations (45) and (51) yields the following equation describing the evolu-

tion of inflation rate :

φY + βY
1− φY

bΠt = βY
1

1− φY
Et
bΠt+1 + φY

1− φY
bΠt−1 + (1− βY )

hcrwt −dmplt

i
(59)

where dmplt = bAt + αbkt − αbLt +

·
α log

k

L
− α

1− α

¸ bαt
is the log-linearized marginal productivity of labor.
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Table 1: Functions and Parameter Estimates
Lu = 4328.2055

Yt = AtK
αt
t (g

tLt)
1−αt A = 5.5668(0.0718), g = 1.0056(8.8× 10−5)

βtU(Ct, Lt,
Mt
Pt
) = βt log

£
C∗at (1− Lt)

1−at¤ β = 0.9986(0.0003), a = 0.4681(0.0016)

C∗t = (Cν
t + bt (Mt/Pt)

ν)
1
ν ν = −22.7561(0.4765), b = 0.0008(5.5× 10−5)

Lit = (
Wit
Wt
)

1
θL−1Lt θL = 0.6888(0.0087)

ACk
t =

φK
2 (

It
Kt
− I

K )
2Kt Φk = 16.8456(1.5501)

log Rt
R = ρR log

Rt−1
R + (1− ρM)× ρR = 0.1395(0.0112), γπ = 0.8042(0.0045)h

γπ log
Πt

Π
+ γy log

Yt
Y t
+ γm log

MGt
MG

i
γy = 4.4× 10−6(4.5× 10−5), γm = 0.4276(0.0187)

+εMt σ2M = 4.3× 10−5(5.2× 10−6)

P
θY

θY −1
t = (1− φY )P

∗ θY
θY −1

t + φYΠt−1P
θY

θY −1
t−1 φY = 0.4052(0.0297)

W
θL

θL−1
t = (1− φL)W

∗ θL
θL−1

t + φLΠ
w
t−1W

θL
θL−1
t−1 φL = 0.7333(0.0234)

log At
A = ρA log

At−1
A + εAt ρA = 0.9761(0.0002), σ

2
A = 0.0012(9.9× 10−5)

log αt
α = ρα log

αt−1
α + εαt ρα = 0.9690(0.0015), σ

2
α = 0.0003(2.7× 10−5)

log At
δ = ρδ log

δt−1
δ + εδt ρδ = 0.9563(0.0012), σ

2
δ = 0.0129(0.0021)

log At
A = ρb log

bt−1
b + εbt ρb = 0.9450(0.0022), σ

2
b = 0.0716(0.0078)

log at
a = ρa log

at−1
a + εat ρa = −0.4573(0.0482), σ2a = 0.2080(0.0302)

cov(εAt, εαt) = −0.0006(5.0× 10−5)
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Table 2A: Comparison of Fits

Model VAR
P & W Stickiness Wage Stickiness Trend No Trend

LT 4328.2055 4296.5478 4749.3752 4724.6128
BIC 4264.8442 4235.7210 4574.4980 4564.9423

Table 2B: Model and Data Moments22

Model Prediction U.S. Data
Series Steady State Std. dev. Mean Std. dev.

Output, y 13.4510 0.0980 13.6851 0.0451
Labor, L 0.3345 0.0338 0.3382 0.0177
Inflation, Π 1.01005 0.0071 1.01005 0.0063
Money Growth, MG 1.0157 0.0162 1.0144 0.0095
Interest Rate, R 1.0171 0.0068 1.0165 0.0080
Wage Inflation, Πw 1.0157 0.0102 1.0142 0.0077

22Standard deviations are for logarithmic deviations from either deterministic steady states or sample means,
where sample output series is stationary transformed via its average growth rate over the sample period.
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Table 3: Constrained Estimation
Lc = 4296.5478

A 5.6571 (0.0362)
g 1.0057 (1.4×10−5)
β 0.9988 (0.0001)
a 0.4704 (0.0013)
ν -23.5989 (0.6351)
θL 0.6758 (0.0078)
b 0.0007 (6.8×10−5)
ΦK 18.4476 (2.8×10−7)
ρR 0.0770 (0.0072)
γπ 0.7716 (0.0052)
γy 2.3×10−5 (2.3×10−5)
φL 0.7660 (0.0193)
ρA 0.9763 (0.0002)
ρα 0.9724 (0.0018)
ρδ 0.9589 (0.0015)
ρb 0.9499 (0.0025)
ρa -0.3623 (0.0379)
σ2A 0.0008 (7.1×10−5)
σ2α 0.0003 (2.3×10−5)
σ2δ 0.0119 (0.0018)
σ2b 0.0653 (0.0032)
σ2a 0.2447 (0.0368)
σ2M 4.3×10−5 (4.9×10−6)

cov(εA, εα) -0.0005 (3.8×10−5)
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Figure 3: Estimated Impulse Responses
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Figure 4: Constrained Impulse Responses
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Figure 5: Re-estimated Impulse Responses
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