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ABSTRACT

We argue that the data on interest rates and exchange rates implies that time-varying risk is the
primary force driving nominal interest differentials on different currency denominated bonds. Since
exchange rates are roughly random walks, the risk premium on a foreign currency denominated bond
is roughly the interest differential over a home currency denominated bond plus a constant. Thus
variations in the interest differential are driven almost entirely by variations in the risk premium.
Moreover, the tendency for higher interest rate currencies to appreciate is difficult to explain without
large and systematic variations in risk. To address these issues we build a general equilibrium model
with fixed costs to exchanging money for assets. As the underlying shocks to money growth vary so
does the number of agents who participate in the asset market. This variation leads to risk in the
economy to vary systematically with the level of the inflation rate. We show that if this variation
is sufficiently large then the model can produce the key time-series features of interest rates and
exchange rates. We show that some cross section evidence supports the key mechanism at work in
the model.
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“Overall, the new view of finance amounts to a profound change. We have to get

used to the fact that most returns and price variation comes from variation in risk premia...”

(Cochrane, p.451)

We develop a monetary general equilibrium model which generates time varying risk

premia as a result of endogenous market segmentation. That time-varying risk is essential for

understanding the movements in asset prices has been widely documented. To illustrate the

basic workings of the model we apply it to interest rates and exchange rates since data on these

variables provide some of the most compelling evidence for the importance of time-varying

risk premia.

To see why time-varying risk premia is important consider the evidence that comes

from nominal interest rates and exchange rates. To be concrete consider the risks faced by

an investor choosing between investing in dollar denominated bonds and euro denominated

bonds. Clearly, the dollar return on the euro bond is risky because next period’s exchange

rate is not known today. The risk premium compensates the holder of this bond for this

exchange rate risk and is defined as the expected log dollar return on a euro bond minus the

log dollar return on a dollar bond.1 In logs, this risk premium is

pt = i∗t + Et log et+1 − log et − it.

where i∗t and it are the euro and dollar interest rates and et is the exchange rate. It fol-

lows from the definition of the risk premium that the difference in nominal interest rates

across currencies can be divided into the expected change in the exchange rate between these

currencies and a currency risk premium.

In standard equilibrium models of interest rates and exchange rates, risk premia are



constant, hence movements in interest rate differentials move one-for-one with the expected

change in the exchange rate. The data suggests nearly the opposite. In the data exchange

rates are roughly a random walk in that the expected depreciation of a currency, Et log et+1−

log et, is roughly constant2. Thus, the interest rate differential i∗t − it is approximately the

risk premium pt plus a constant. Hence, the observed variations in the interest differential

are almost entirely accounted for by movements in the risk premium.

The idea that currency risk premia must be highly variable originally stems from

the observation that high interest rate currencies tend to appreciate. This observation, docu-

mented by Fama (1984) and Hodrick (1987) among others, is widely referred to as the forward

premium anomaly. Without large variations in risk, this tendency cannot be explained since

investors would demand higher interest rates on currencies that are expected to fall in value,

not ones that are expected to rise in value.

The basic idea that asset market are segmented in the sense that, at any given time,

only a fraction of agents participate in them, has been used in a variety of settings to account

for the high levels of risk premia. (See ......) Here we develop a general equilibrium monetary

model that generates time-varying risk premia as a result of variations in the degree of market

segmentation that arise endogenously in response to changes in the money growth rate. We

show that the model can generate, qualitatively, the type of systematic variations in risk

premium called for by the data on interest rates and exchange rates. Rather than to build

a quantitative model, we deliberately build a simple model where the main mechanism can

be clearly seen. For example, we abstract from trade in goods throughout so as to focus on

frictions in asset markets.

Our model is a two country pure exchange cash-in-advance economy. The key differ-
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ence between this model and the standard cash-in-advance model is that agents must pay a

fixed cost to transfer money between the goods market and the asset market. This fixed cost

is similar to that in the models of Baumol (1952) and Tobin (1956). This fixed cost differs

across agents. In each period agents with fixed costs below some cutoff level pay the fixed

cost and thus, at the margin, freely exchange bonds and money. Agents with fixed costs

higher than the cutoff level choose not to pay the fixed cost and hence do not. In this sense,

asset markets are segmented.

Increases in the money growth rate increase the inflation rate which in our model

increases the net benefit of participating in the asset market. Through this mechanism an

increase in money growth leads more agents to participate actively in asset markets and hence

lowers the risk premium. We show that this type of time-varying risk can be the primary

force driving interest rate differentials. Moreover, this time-varying risk also generates the

forward premium anomaly.

So far we have discussed our model’s implications for the time series variability for

the risk premium. The mechanism for this variability is that at times when money growth

and inflation are relatively high the fraction of agents that are participating in the asset

market is relatively high and hence risk is relatively low. Our model also have implications

for the cross section. One implication of our model’s key mechanism is that if inflation is

permanently higher in one country then asset market participation is also permanently higher.

With higher asset market participation the marginal utility of active agents is less sensitive

to money growth fluctuations and thus the volatility of the risk premium should be small.

Thus, the model predicts that countries with high enough inflation should not have a forward

premium anomaly. In some work comparing the forward premium in developed and emerging
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economies, Bansal and Dahlquist (2000) find evidence supporting this prediction.

In terms of the literature there are a number of monetary equilibrium models with

(roughly) constant risk premia. As Backus, Foresi and Telmer (1995) and Engel (1996)

emphasize, these models cannot address the features of the date discussed here. The contri-

bution of this paper is to develop such a model. We have shown that by taking the standard

cash-in-advance model and adding one key ingredient, the endogenous market segmentation

arising from the fixed cost, we transform a model that is inconsistent with the most basic

features of the data to one that is at least potentially consistent with many of them.

One way to generate time-varying risk is to have the conditional variances of the

underlying shocks vary greatly with their levels (See Obstfeld and Rogoff 1998.) As Hodrick

(1989) and Backus, Foresi and Telmer (1995) have noted that there is little evidence in the

data for such movements of the appropriate magnitude. Motivated by this evidence we take a

different approach. In our model the risk premium is time-varying even though the underlying

shocks have constant conditional variances.

Our work builds on that of Rotemberg (1985), Alvarez and Atkeson (1997) and it most

closely related to that in Alvarez, Atkeson and Kehoe (2002). It is also related to the work

of Grilli and Roubini (1992) and Schlagenhauf and Wrase (1995) who study the effects of

money injections on exchange rates in two country variants of the models in Lucas (1990)

and Fuerst (1992) but do not address variations in the risk premium.

1. Risk, Interest Rates and Exchange Rates in the Data

We have argued that interest differentials are driven mainly by time-varying risk. To

make our argument precise we first define the (log) risk premium for a euro denominated
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bond as the expected log dollar return on a euro bond minus the log dollar return on a dollar

bond. The dollar return on a euro bond, (1+ i∗t )et+1/et, is obtained by converting a dollar at

t to 1/et euros, buying a euro bond paying interest 1 + i∗t and then converting the resulting

euros back to dollars at t+ 1 at exchange rate et+1. Hence, in logs, the risk premium is

pt = i∗t + Et log et+1 − log et − it.(1)

Clearly, the dollar return on the euro bond is risky because the future exchange rate et+1 is

not known at t. The risk premium compensates the holder of this bond for this exchange rate

risk.

Our argument follows from combining the definition of the risk premium with two

features of the data, namely that exchange rates are close to martingales, in the sense that

the variance of Et log et+1 − log et is small, and the variance of interest differentials is fairly

large. To demonstrate our claim first consider the extreme case in which the exchange rate

is exactly a martingale so that Et log et+1− log et is constant. Then (5) implies that i∗t − it is

just the risk premium plus a constant, so that literally all of the movements in the interest

differential is driven by variations in the risk premium. In the more relevant case in which

variance of expected depreciation is small, we see that most of the movements in the interest

differential are driven by movements in the risk premium.

A related feature of the data is that high interest rate currencies tend to appreciate

in that

cov (it − i∗t , log et+1 − log et) ≤ 0(2)

where it and i∗t are the nominal interest rates on home and foreign currency and et is the price

of foreign currency in units of domestic currency. This feature has been widely documented
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for the currencies of the major industrialized countries over the period of floating exchange

rates. (See, for example, Backus, Foresi, and Telmer 1998 for a recent discussion). The

inequality (2) is referred to as the forward premium anomaly. 3 Notice that (2) is equivalent

to

cov (it − i∗t , Et log et+1 − log et) ≤ 0(3)

which is more convenient to work with in a theoretical model. In the literature this anomaly

is documented by a regression of the change in the exchange rates on the interest differential

log et+1 − log et = a+ b(it − i∗t ) + vt+1.(4)

Such regressions typically yield estimates of b that are zero or negative. (These regressions

also have low R2 and so in this sense the forward premium anomaly is consistent with the

fact that exchange rates are close to martingales.)

Notice that if the risk premium is constant, then movements in the expected depreci-

ation and movements in the interest differential are perfectly correlated. In particular, if pt

is constant than if Et log et+1 − log et falls then it − i∗t also falls and the covariance in (3) is

positive. Clearly, a successful theory of the forward premium anomaly must have that time-

varying risk premia. In particular, when there is an increase in the expected appreciation of

the dollar, the risk premium must fall so much that dollar interest rates rise relative to euro

interest rates. Mechanically, for Et log et+1 − log et to be negatively correlated with

it − i∗t = Et log et+1 − log et − pt(5)

it must be that as Et log et+1 − log et falls the risk premium pt falls by so much that it − i∗t

rises.
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To develop the connection between expected depreciation and risk premia more fully

we find it useful to use (1) to rewrite (3) as

cov(Et log et+1 − log et, pt) ≥ var(Et log et+1 − log et).(6)

To get some intuition about what (6) entails notice that it implies the following two conditions:

i) when the home currency appreciates the risk premium falls (so that the covariance in (6)

is positive) and ii) movements in the risk premium are large in that

var (pt) ≥ var (it − i∗t ) .(7)

To derive (7) substitute (1) into (6), manipulate the resulting inequality to be

var (it − it) ≤ cov (it − i∗t , pt) = corr (it − i∗t , pt) std (it − i∗t ) std (pt) ,

then divide by std (it − i∗t ) use the fact that a correlation is less than or equal to one.

2. The economy

Consider a two country, cash-in-advance economy with an infinite number of periods

t = 0, 1, 2, . . . . We refer to one country as the home country and the other as the foreign

country. In each country, there is a government and a continuum of households of measure

one. Households in the home country use the home currency, which we refer to as dollars, to

purchase a home good. Households in the foreign country use the foreign currency, which we

refer to as euros, to purchase a foreign good.

Trade in this economy at dates t ≥ 1 takes place in three separate locations: an

asset market and the two goods markets. In the asset market, households trade the two

currencies and dollar and euro bonds which promise delivery of the relevant currency in the
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asset market in the next period, and the two governments introduce their currencies via open

market operations. In each goods market, households use the local currency to buy the local

good subject to a cash-in-advance constraint and sell their endowment of the local good for

local currency.

Each household must pay a real fixed cost γ for each transfer of cash between the asset

market and the goods market. This fixed cost is constant over time for any specific household

but varies across households in both countries according to a distribution with density f(γ).

Households are indexed by their fixed cost γ. The fixed costs for households in each country

are in units of the local good.

The only source of uncertainty in this economy is the money growth shocks in the

two countries. The timing within each period t ≥ 1 for a household in the home country is

illustrated in Figure 1. We emphasize the physical separation between markets by placing

the asset market in the top half of the picture and the goods market in the bottom half.

Households in the home country enter the period with the cash P−1y they obtained from

selling their endowments at t − 1, where P−1 is the price level and y is their endowment.

Each government conducts an open market operation in the asset market which determines

the realizations of money growth µ and µ∗ in the two countries and the current price levels

in the two countries P and P ∗.

The household then splits into a worker and a shopper. The worker sells the household

endowment y for cash Py and rejoins the shopper at the end of the period. The shopper takes

the household’s cash P−1y with real value n = P−1y/P and shops for goods. The shopper

can choose to pay the fixed cost γ to transfer cash Px with real value x to or from the asset

market. This fixed cost is paid in cash obtained in the asset market. If the shopper pays the
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fixed cost then the cash in advance constraint is c = n+x; otherwise this constraint is c = n.

The household also enters the period with bonds that are claims to cash in the asset

markets with payoffs contingent on the rates of money growth µ and µ∗ in the current period.

This cash can either be reinvested in the asset market or, if the fixed cost is paid, can be

transferred to the goods market. In Figure 1, letting B denote the current realization of the

state-contingent bonds and
R
qB0 the household’s purchases of new bonds, the asset market

constraint is B =
R
qB0 + P [x + γ] if the fixed cost is paid and B =

R
qB0 otherwise. At

the beginning of period t + 1, this household starts with cash Py in the goods markets and

contingent bonds B0 in the asset market.

In equilibrium households with sufficiently low fixed costs pay this cost and transfer

cash between the goods and asset markets while others do not. We refer to households

that pay the fixed cost as active and refer to households who do not as inactive. Inactive

households simply consume their current real balances.

In the rest of the section we flesh out this outline of the economy. This model is related

to that in Alvarez, Atkeson and Kehoe (2002). In that model all agents face the same fixed

cost but i.i.d. idiosyncratic income shocks and households choose to be active or inactive

based on the realizations of these shocks.

Throughout the paper we assume that the shopper’s cash-in-advance constraint binds

and that in the asset markets households hold their assets in interest-bearing securities rather

than cash. Alvarez, Atkeson and Kehoe (2002) provide sufficient conditions to this to be true

in that related model. It is easy to extend those arguments to this model. One might also

consider variants of this model in which the fixed cost for each household varies randomly

over time. For the appropriate set of sufficient conditions the cash-in-advance constraints
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would always bind in those variants and the equilibrium would be identical.

At the beginning of period 1, home households of type γ haveM0 units of home money,

B̄h(γ) units of the home government debt and B̄∗h units of the foreign government debt which

are claims on B̄h(γ) dollars and B̄∗h euros in the asset market at that date. Likewise, foreign

households start period 1 withM∗
0 euro holdings in the foreign goods market and start period

0 with B̄f units of the home government debt and B̄∗f (γ) units of the foreign government debt

in the asset market in period 0.

We let Mt denote the stock aggregate supply of dollars in period t, and let µt =

Mt/Mt−1 denote the growth rate of the dollar supply. Similarly, let µ∗t be the growth rate

of the supply of euros M∗
t . Let st = (µt, µ

∗
t ) and let s

t = (s1, . . . , st) denote the history of

money growth shocks up through period t and let g(st) denote the density of the probability

distribution over such histories.

The home government issues one period dollar bonds contingent on the aggregate

state st. At date t, given state st, the home government pays off outstanding bonds B (st) in

dollars and issues claims to dollars in the next asset market of the form B(st, st+1) at prices

q(st, st+1). The home government budget constraint at st with t ≥ 1 is

B(st) =M
³
st
´
−M(st−1) +

Z
st+1

q(st, st+1)B
³
st, st+1

´
dst+1,(8)

with M(s0) = M̄ given and, at t = 0 the constraint is B̄ =
R
s1
q(s1)B(s1)ds1. Likewise, the

foreign government issues euro bonds denoted B∗(st) with bond prices denoted q∗(st, st+1).

The budget constraint for the foreign government is then parallel to the constraint above.

In the asset market at each date and state, home households trade a set of one period

dollar bonds and euro bonds that have payoffs next period contingent on the aggregate event
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st+1. Arbitrage between these bonds implies that

q(st, st+1) = q∗(st, st+1)e(st)/e(st+1)(9)

and thus without loss of generality we can assume that home households trade in home bonds

and foreign households trade in foreign bonds.

Consider now the problem of an household of type γ in the home country. Let

P (st) denote the price level in dollars the home goods market at date t ≥ 1. In each period

t ≥ 1, in the goods market households of type γ start the period with dollar real balances

n(st, γ). They then choose transfers of real balances between the goods market and the asset

market x(st, γ), an indicator variable z(st, γ) equal to zero if these transfers are zero and one

if they are not and consumption of the home good c(st, γ) subject to the cash-in-advance

constraint

c(st, γ) = n(st, γ) + x(st, γ)z(st, γ),(10)

n
³
st+1, γ

´
=

P (st)y

P (st+1)
.(11)

where in (10) at t = 1, the term P (s1)n(s1, γ) is given by M0. In the asset market at t ≥ 1,

home households begin with cash paymentsB(st, γ) on their bonds. They purchase new bonds

and make cash transfers to the goods market subject to the sequence of budget constraints

B
³
st, γ

´
=
Z
st+1

q(st, st+1)B
³
st, st+1

´
dst+1 + P (st)

h
x(st, γ) + γ

i
z(st, γ).(12)

We assume that both consumption and real bondholdingsB(st, γ)/P (st) are uniformly bounded

by some large constants.

The problem of a home consumer of type γ is to maximize

∞X
t=1

βt
Z
U(c(st, γ))g(st)dµt(13)
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subject to the constraints (10)- (12). Consumers in the foreign country solve the analogous

problem with P ∗(st) denoting the price level in the foreign country in euros. We require that

R
B̄h(γ)f(γ)dγ + B̄f = B̄ and B̄∗h +

R
B̄∗f (γ)f(γ)dγ = B̄∗.

Since each transfer of cash between the asset market and the home goods market

consumes γ units of the home good, the total goods cost of carrying out all transfers between

home consumers and the asset market at t is γ
R
z(st, γ)f(γ)dγ, and likewise for the foreign

consumers. The resource constraint in the home country is given by

Z h
c(st, γ) + γz(st, γ)

i
f(γ)dγ = Y(14)

for all t, st, and we have the analogous constraint in the foreign country. The fixed costs are

paid for with cash obtained in the asset market and thus the home country money market

clearing condition at t ≥ 0 is given by
Z ³

n(st, γ) +
h
x(st, γ) + γ

i
z(st, γ)

´
f(γ)dγ =M(st)/P (st)(15)

for all st. The money market clearing conditions for the foreign country are analogous. We

let c denote the sequences of functions c(st, γ) and use similar notation for other variables.

An equilibrium is a collection of bond and goods prices q, q∗ and P, P ∗ together with

bondholdings B, B∗ for individuals B, B∗ for the government, and an allocation c, x, z, n and

c∗, x∗, z∗, n∗ such that for each γ, the bond holdings and the allocation solve the households’

utility maximization problems, the governments’ budget constraints hold, and the resource

constraints and the money market clearing conditions are satisfied.

3. Characterizing equilibrium

Here we solve for the consumption and real balances of active and inactive households.

We then characterize the link between the consumption of active households and asset prices.
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Throughout we assume that the cash-in-advance constraint always bind and the house-

holds hold only interest-bearing securities in the asset market. (We can provide sufficient

conditions for this to hold using an argument similar to that given in Alvarez, Atkeson and

Kehoe 2002.) Under this assumption, a household’s decision to pay the fixed cost to trade at

date t affects only its current consumption and bondholdings and does not directly affect the

real balances it holds in the goods market at later dates. Notice that the constraints (11),

(14) and (15) imply that the price level is

P (st) =M(st)/Y,(16)

the inflation rate is πt = µt, real money holdings are n(s
t, γ) = y/µt. Hence the consumption

of inactive households is c(st, γ) = yt−1/µt. Let cA(s
t, γ) denote the consumption of an active

household for a given st and γ.

In this economy inflation is distorting because it reduces the consumption of any house-

hold that chooses to be inactive. This effect induces some households to use real resources to

pay the fixed cost thereby reducing the total amount of resources available for consumption.

There are no other distortions beyond this one. Because of this feature it turns out that the

competitive equilibrium allocations and asset prices can be found from the solution of the

following planning problem for the home country together with the analogous problem for

the foreign country

max
∞X
t=1

βt
Z
st

Z
U(c(st, γ)f(γ)g(st)dγdst

subject to the resource constraint (14) and

c(st, γ) = z(st, γ)cA(s
t, γ) + (1− z(st, γ))y/µt.(17)
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The constraint (17) captures the restriction that the consumption of households that do not

pay the fixed cost is pinned down by their real balances y/µt. Here we have the planning

weight for households of type γ simply being the fraction of agents of this type.

This problem can be decentralized with the appropriate settings of the initial en-

dowments B(γ) and B∗(γ). Asset prices are obtained from the multipliers on the resource

constraints above. Formally, we can show that the solution to this planning problem is an

equilibrium by directly verifying that it satisfies the equilibrium condition.

Notice that this problem reduces to a sequence of static problems. We first analyze

the consumption pattern for a fixed choice of z and then analyze the optimal choice of z. The

first order condition for cA reduces to

βtU 0(cA(st, γ))g(st) = λ(st)(18)

where λ(st) is the multiplier on the resource constraint. This first order condition clearly

implies that all households that pay the fixed cost choose the same consumption levels so

that cA(st, γ) is independent of γ. Since this problem is static this consumption level depends

only on the current shock µt and hence we denote this consumption as cA(µt).

Given that the solution only depends on current µt and γ we drop dependence on t.

It should be clear that the optimal choice of z has a cutoff rule form: for each shock µ there

is some fixed cost level γ̄(µ) such that the households with γ ≤ γ̄(µ) pay this fixed cost and

households with fixed costs above this level do not. For each µ, the planning problem thus

reduces to choosing two numbers cA(µ) and γ̄(µ) to solve

maxU(cA(µ))F (γ̄(µ)) + U(y/µ)(1− F (γ̄(µ))
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subject to

cA(µ)F (γ̄(µ)) +
Z γ̄

0
γf(γ)dγ + (y/µ)(1− F (γ̄(µ)) = y.(19)

The first order conditions can be summarized by

U(cA(µ))− U(y/µ) + U 0(cA(µ))[cA(µ) + γ̄(µ)− y/µ] = 0(20)

and (19). In the appendix we show that the solution to these two equations, namely cA(µ)

and γ̄(µ), is unique. We then have

Proposition 1: The equilibrium consumption for households is given by

c(st, γ) =


y/µt if γ ≤ γ̄(µt)

cA (µt) otherwise

where the functions γ̄(µ) and cA (µ) are the solutions to (19) and (20).

In the decentralized economy corresponding to the planning problem asset prices are

given by the multipliers on the resource constraints for the planning problem. Here from (18)

these multipliers are equal to the marginal utility of active households.

Hence the pricing kernel for dollar assets is

m(st, st+1) = β
U 0(cA(µt+1))
U 0(cA(µt))

1

µt+1
(21)

while the pricing kernel for euro assets is

m∗(st, st+1) = β
U 0(c∗A(µ

∗
t+1))

U 0(c∗A(µ∗t ))
1

µ∗t+1
.(22)

These kernels can be thought of as the state contingent prices for dollars and euros normalized

by the probabilities of the state.
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These pricing kernels can price any dollar or euro asset. In particular, it is immediate

that any asset purchased in period t with a dollar return of Rt+1 between periods t and t+1

satisfies the Euler equation

1 = Etmt+1Rt+1(23)

where, for simplicity, here and for much of what follows we drop the st notation. Likewise, for

every possible euro asset with rate of return R∗t+1 from t to t+1, satisfies the Euler equation

1 = Etm
∗
t+1R

∗
t+1.(24)

These Euler equations immediately imply that

it = − logEtmt+1 and i∗t = − logEtm
∗
t+1(25)

where exp(it) is the dollar return on a dollar-denominated bond with interest rate it and

exp(i∗t ) is the euro return on a euro-denominated bond with interest rate i
∗
t .

The pricing kernels for dollars and euros have a natural relation, namely m∗
t+1 =

mt+1et+1/et. This can be seen as follows. For every euro asset, there is a corresponding

dollar asset with rate of return Rt+1 = R∗t+1et+1/et formed when a dollar investor converts

his dollars into euros at t, buys the euro asset, and converts his return back into dollars at

t+ 1. Equilibrium requires that

Etmt+1Rt+1 = Et

·
mt+1

et+1
et

¸
R∗t+1 = 1.

Since this holds for every euro return, we have that mt+1et+1/et is an equilibrium pricing

kernel for euro assets. With complete markets, there can be only one euro pricing kernel, so

that

log et+1 − log et = logm∗
t+1 − logmt+1.(26)
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Substituting (25) and (26) into (1) it follows that

pt = Et logm
∗
t+1 −Et logmt+1 − (logEtm

∗
t+1 − logEtmt+1).(27)

Hence, the currency risk premium depends on the difference between the “expected value of

the log” and the “log of the expectation” of the pricing kernel. From Jensen’s inequality, it

is clear that fluctuations in the risk premium are driven by fluctuations in the conditional

variability of the pricing kernel.

Finally, note that given any period 0 exchange rate e0, (26) together with the kernels

gives the entire path of the nominal exchange rate et. In Appendix A we show that the period

0 nominal exchange rate e0 is given by

e0 =
³
B̄ − B̄h

´
/B̄∗h.(28)

Clearly, this exchange rate exists and is positive as long as B̄h < B̄ and B̄∗h > 0 or B̄h > B̄

and B̄∗h < 0.

4. Active Agent’s Marginal Utility

It is clear from our formulas (21) and (22) for the dollar and euro pricing kernels

that, in order to characterize the link between money injections and exchange rates and

interest rates, we need to determine how active agents’ marginal utilities in the two countries

responds to money injections, namely how U 0(cA(µt)) and U 0(c∗A(µ
∗
t )) vary with µt and µ∗t .

In the simplest monetary models (such as Lucas 1982), all of the agents in the economy are

active every period and changes in money growth have no impact on marginal utilities. Our

model introduces two key innovations over these simple models. First, in this model, because

of the segmentation of asset markets, changes in money growth do have an impact on the
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consumption, and hence marginal utility, of active agents. Second, because the degree of

market segmentation is endogenous, the size of this impact of changes in money growth on

the marginal utility of active agents changes systematically with the level of money growth.

With these two innovations, our model can deliver large and variable currency risk premia.

To study the links between money growth and asset prices in this model, we find it

useful to define φ(µ) to be the elasticity of the marginal utility of active agents to a change

in money growth. With CRRA preferences of the form U(c) = c1−σ/(1− σ), this elasticity is

given by

φ(µ) ≡ −d logU
0(cA(µ))

d logµ
= σ

d log cA(µ)

d log µ
(29)

With log cA(µ) increasing in logµ, we have that φ(µ) > 0. The larger is φ(µ),

the more sensitive is the marginal utility of active agents to money growth.When log cA(µ)

concave in log µ, φ(µ) decreases in µ and, hence, the marginal utility of active agents is more

sensitive to changes in money growth at low levels of money growth than at high levels of

money growth. In this sense, the amount of risk that active agents bear depends on the level

of money growth.

The following proposition shows that as money growth and inflation increase more

agents become active. The result is intuitive, as inflation becomes higher, the cost of not

participating is higher since the consumption of inactive agents, namely y/µ, falls as money

growth µ increases.

Proposition 2. As µ increases, more agents become traders. In particular, for µ ≥

1, γ̄0 (µ) > 0 for µ > 1, and γ̄0 (1) = 0.

Proof. Differentiating equations (19) and (20) with respect to µ and solving for γ0 we
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obtain

γ̄0 (µ) =

h
U 0
³
y
µ

´
− U 0 (cA)

i
y
µ
− U 00 (cA) (cA + γ̄ − y/µ) 1−F

F
y/µ2

U 0 (cA)− U 00 (cA) (cA + γ̄ − y/µ) f/F

where, to simplify we have omitted the arguments in the functions F, f, cA and γ̄. Notice

that cA (1) = y and γ̄ (1) = 0. Also (20) implies that cA + γ̄ − y/µ ≥ 0, with strict inequality

for µ > 1, and hence U 0
³
y
µ

´
−U 0 (cA) ≥ 0, with strict inequality for µ > 1. Finally, since U is

strictly concave, U 00 (cA) < 0, then γ̄0 > 0 for µ > 1. Using these resutls for µ = 1 we get

γ0 (1) = 0. Q.E.D.

As we have noted, a key feature of our model is that consumption of active agents

is increasing and concave in money growth in the relevant region of money growth rates,

namely around the mean money growth rate. In the next proposition we analyze how the

consumption of active agents varies with money growth around the point where there is no

inflation.

Proposition 3. If 0 < F (0) then the log of the consumption of active agents cA is

strictly increasing and strictly concave in log µ around µ = 1. In particular,

φ(1) = σ
d log cA (µ)

d log µ
|µ=1 = σ

1− F (0)

F (0)
> 0,(30)

φ0(1) = σ
d2 log cA (µ)

(d log µ)2
|µ=1 = − φ(1)

F (0)
< 0.

Proof. To show that φ (1) = σ (1− F (0)) /F (0) , differentiate (19) with respect to µ and

γ̄, and use, from the previous proposition that γ̄0 (1) = γ̄ (1) = 0, obtaining

c0A (1) = y
1− F (0)

F (0)
.

Using that cA (1) = y we obtain the answer. To show that φ0(1) = −φ(1)/F (0) , first
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differentiate (??) to obtain

φ0 (1) = σ

c00A (1)
cA (1)

+
c0A (1)
cA (1)

−
Ã
c0A (1)
cA (1)

!2 .(31)

Second, differentiate (19) with respect to µ and γ̄ again, and use that at µ = 1, γ̄0 (µ) =

γ̄ (µ) = 0, and cA (µ) + γ̄ (µ)− y/µ = 0, to obtain

c00A (1) = −2y
1− F (0)

F (0)
.

Using these expressions for c0A and c0
0
A in (31) we obtain the desired result. QED

In Proposition 3 we have assumed that a fraction F (0) of agents have zero cost to

participate in asset markets. Notice that if the fraction of agents with zero costs is small

these effects are substantial, in that the sensitivity of the marginal utility to money growth,

φ (1) , is large, and decreases with µ rapidily in the sense that φ0 (1) is very negative.

In Propositon 2 we showed that more agents pay the fixed cost when money growth

increases and in Proposition 3 we showed that locally the consumption of active agents is

increasing and concave in money growth. Here we consider a simple numerical example that

demonstrates these features more broadly. We let y = 1, σ = 2 and for fixed costs we let

fraction F (0) = xx of agents have zero fixed costs and the remainder have fixed costs with

a log normal distribution log γ˜N(??, 1). In Figures 1 and 2 we plot F (γ̄(µ)) and log cA(µ)

against log µ (annualized). In Figure 1 we see that as money growth increases more agents

pay the fixed costs. In Figure 2 we see that the consumption of active agents is increasing

and concave in money growth in the relevant range.

As we see in Figure 2, the log of consumption and hence marginal utility of active

agents is a concave function of the log of money growth. Because of this non-linearity, even if

we assume that our fundamental shocks, here money growth rates, have constant conditional
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variances, the resulting pricing kernels have time-varying conditional variances. To capture

this nonlinearity in a tractable way when computing the asset prices implies by our model,

we take a second order approximation to the marginal utility of active agents in (??)

logU 0 (cA (µt)) = logU
0 (cA (µ̄))− φµ̂t +

1

2
ηµ̂2t(32)

where µ̂t = log µt − log µ̄,

φ ≡ − d logU 0(cA(µ))
d logµ

¯̄̄̄
¯
µ=µ̄

= σ
d log cA(µ)

d log µ

¯̄̄̄
¯
µ=µ̄

(33)

η ≡ − d2 logU 0(cA(µ))
(d logµ)2

¯̄̄̄
¯
µ=µ̄

= −σ d2 log cA(µ)

(d log µ)2

¯̄̄̄
¯
µ=µ̄

Motivated by our previous results, we assume φ > 0 and η > 0. With this parameterization

we have the pricing kernel is given by

logmt+1 = log β/µ̄− (φ+ 1)µ̂t+1 +
1

2
ηµ̂2t+1 + φµ̂t −

1

2
ηµ̂2t .(34)

Throughout we assume that the log of money growth in both countries follows an autoregres-

sive process so that

µ̂t+1 = ρµ̂+ εt+1(35)

where εt+1 is independent across countries and normal with mean zero and variance σ2ε. Let

σ2µ = V ar(µ̂t − µ̂∗t ). A useful result for later will be that

V ar(µ̂2t − µ̂∗2t ) = 3σ
4
µ.(36)

5. Exchange Rates, Risk, and Interest Rates in the Model

In this section, we use our approximation (34) to examine the properties of exchange

rates, currency risk premia, and interest rates in our model. We derive restrictions on the
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parameters of this pricing kernel required for the model to generate the main regularities

observed in the data as described in section 2. We then finish the section with a numerical

example in which we compute the parameters φ and η implied by the model and show that

the model reproduces these regularities for these parameter values.

A. Exchange rates

In this section we develop restrictions on the parameters of our model so that it

generates exchange rates that are roughly a martingale. We then develop a relation between

money and the nominal exchange rate which will be useful for our analysis of the forward

premium anomaly. In particular, we give conditions under which an increase in money growth

leads to an appreciation of the home currency.

Using the result that the change in the exchange rate is related to the pricing kernel

by (26), together with (34) we have that

Et log et+1 − log et = [φ− (φ+ 1)ρ] (µ̂∗t − µ̂t) +
1

2
η
³
ρ2 − 1

´ ³
µ̂∗2t − µ̂2t

´
.

Conceptually, we find it useful to use the real exchange rate xt = etP
∗
t /Pt to help

explain our results. With symmetry between the two countries it is easy to show that the

real exchange rate is given by

xt =
U 0(c∗A(µ

∗
t ))

U 0(cA(µt))
.

We can then write the change in the nominal exchange rate as the sum of the change in the

real exchange rate and the expected inflation differential

log et+1 − log et = [log xt+1 − log xt] + [logPt+1/Pt − logP ∗t+1/P ∗t ](37)
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Using (21), (22) and (26) together with (16) and its foreign analog we can write the right-hand

side of (37) as

[logU 0(c∗At+1)/U
0(cAt+1)− logU 0(c∗At)/U

0(cAt)] + [log µt+1 − log µ∗t+1](38)

where the first bracketed term corresponds to the change in the real exchange rate and the

second term corresponds to the expected inflation differential.

In the standard model with no fixed costs money growth has no effect on agents’

consumption and hence the real exchange rate is not affected by changes in money growth.

thus, the only effect of money growth on the exchange rate comes through the impact of

money growth on inflation. As a result, in the standard model, the nominal exchange rate

has the same variability as fundamentals.

In our model the real exchange will be affected by money growth. In particular, an

increase in home money growth leads to increase in the consumption of the home active

agents which leads the real exchange rate

log xt = logU
0(c∗A(µ

∗
t ))/U

0(cA(µt))

to depreciate. Since the parameter φ measures the response of the marginal utility to money

growth, for large φ real exchange rates will be volatile. (See Alvarez, Atkeson and Kehoe

2002 for some detailed discussion in a related model.)

Now consider the relationship between money growth and the expected changes in

the nominal exchange rate. Again, in the standard model, the real exchange rate is not

affected by changes in money growth, and thus, the only effect of a change in money growth

on the expected change in the nominal exchange rate is the expected inflation effect, namely

d(Et log µt+1)/d log µt. This effect is larger the more persistent is money growth. When money
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growth follows the autoregressive process (35) then this effect is simply ρ. Thus in the standard

model an increase in money growth of one percent leads to an expected nominal depreciation

of size ρ.

In our model with fixed costs an increase in money growth can lead either to an

expected nominal appreciation or to an expected nominal depreciation depending on the

extent of market segmentation and the persistence of money growth. To see this consider

first the case where money growth is i.i.d.. In this case, the higher money growth at t has no

effect on the expected money growth rate and thus has no effect on the expectation of either

expected inflation Et logPt+1/Pt = Et logµt+1 or the expected real exchange rate

Et log xt+1 = Et logU
0(c∗A(µ

∗
t+1))/U

0(cA(µt+1)).

However, the higher money growth at t does increase the current consumption of the home

active agents which leads the current real exchange rate

log xt = logU
0(c∗A(µ

∗
t ))/U

0(cA(µt))

to appreciate. Since the expectation of the real exchange rate at t + 1 is unchanged the

exchange rate must be expected to appreciate. In this sense, the real exchange rate initially

overshoots.

Consider next the case where money growth is persistent as in (35). In this case

changes in the money growth rate in period t, in addition to affecting the real exchange rate

in period t, also affect the predicted money growth rate at t+1 and thus have both expected

inflation effects and effects on the expected real exchange rate in period t+1. Using (26),(34)

and our approximation (32) we have that the impact on the expected change in the nominal
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exchange rate from an increase in money growth evaluated at µt = µ̄ is

d

d log µt
(Et log et+1 − log et) = −φ(1− ρ) + ρ.(39)

The term −φ(1 − ρ) in (39) is the expected real depreciation effect while the term ρ is the

expected inflation effect. To understand the expected real depreciation effect note that an

increase in the money growth rate at t increases the consumption of home active households

both on impact at t and in the subsequent period at t + 1. The impact effect lowers the

marginal utility of home goods at t by−φ and by itself makes the real exchange rate appreciate

at t. This shock at t also raises the expected marginal utility of home goods at t+ 1 as well

by ρφ, but if the shock is mean reverting the effect on the level of the real exchange rate at

t+ 1 is smaller than it is on the real exchange rate at t so there is an expected depreciation.

As money growth becomes more persistent the affects on t and t + 1 become more similar

and the amount of expected depreciation falls.

Clearly if the active agents’ marginal utility decreases enough with money growth in

that

φ >
ρ

1− ρ
(40)

then the expected real depreciation effect dominates the expected inflation effect and an

increase in money growth leads to an expected nominal appreciation.

Finally, note that when the left-side of (40) is only slightly larger than the right-

side, the expected real depreciation effect is only slightly larger than the expected inflation

effect, and from (39) the nominal exchange rate is roughly a martingale. Here the expected

depreciation of the real exchange rate following the initial overshooting of the real exchange
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rate is nearly balanced by the expected inflation effect and thus the expected change in

nominal exchange rate is nearly zero.

More formally, we have that

V ar (Et log et+1 − log et) =

[φ(1− ρ)− ρ]2 σ2µ +
3

2

h³
1− ρ2

´
ησ2µ

i2

Clearly, if φ(1−ρ)−ρ is close to zero as discussed above the first term is close to zero. For the

exchange rate to be roughly a martingale we also need the second term to be small. Clearly,

this will be true if money growth is highly serially correlated so that ρ is close to one.

B. Risk premia

Here we discuss the impact of money growth on the risk premium. We show that

the risk premium can vary systematically with the underlying shocks even though these

shocks have constant conditional variances. In particular, the sensitivity of the active agents’

marginal utilities to money growth shocks is smaller the higher is the level of these shocks.

Intuitively, a higher level of money growth leads to lower asset market segmentation. Thus,

an increase in money growth decreases the risk premium pt. We also give conditions under

which the variation in the risk premium will be large.

Recall that the risk premium can be written in terms of the pricing kernel as

pt = Et logm
∗
t+1 −Et logmt+1 − (logEtm

∗
t+1 − logEtmt+1).

For a conditionally lognormal variablemt+1, it is well known that logEtmt+1 equalsEt logmt+1+

1/2V art logmt+1, which then implies that the risk premium pt equals one half the difference

of the conditional variances of the log kernels. Given our approximation (34) the pricing
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kernels are not conditionally lognormal. Nevertheless, in Appendix C we show that a similar

formula applies, provided that ησ2ε < 1. In particular, the risk premium is given by

pt =
1

2

1

1− ησ2ε

³
V art logm

∗
t+1 − V art logmt+1

´
(41)

with

V art(logmt+1) = (ρηµ̂t − (φ+ 1))2 σ2ε +
3

4
η2σ4ε

and likewise for V art
³
logm∗

t+1

´
To see how the risk premium varies with money growth we calculate the derivative of

the risk premium and evaluate it at µt = µ̄ and get

d

d log µt
pt = − 1

1− ησ2ε
ρη(φ+ 1)σ2ε < 0(42)

when η is positive and less than 1/σ2ε. The basic idea here has two parts. First, since ρ is

positive, a high level of money growth in period t leads agents to forecast a higher level of

money growth in period t+ 1. Second, in any period, since η is positive, the marginal utility

of active agents is concave in the level of money growth in that period. So as money growth

increases the sensitivity of marginal utility to changes in money growth decreases. Thus, a

high level of money growth in period t leads agents to predict that marginal utility in period

t+ 1 will be less variable. Hence the risk premium decreases with the current level of money

growth.

Next consider the unconditional variability of the risk premium. From the (41) and

the expressions for V ar (logmt+1) and V ar
³
logm∗

t+1

´
,

V ar(pt) =

Ã
1

2

ηρσ2ε
1− ησ2ε

!2
{[2(φ+ 1)]2 σ2µ + (ηρ)23σ4µ}

27



Clearly, the variability of the risk premium is increasing in φ, η and ρ. The intuition for this

result is the same as the one for (42). As these parameters increase, the conditional variance

of the pricing kernel changes more with a given change in the growth rate of money.

Recall that the interest rate differential is the sum of the expected change in the

exchange rate and the risk premium. If the exchange rate is a martingale, then the interest

differential is equal to the risk premium and, hence, our formula for the variance of the risk

premium also describes the volatility of the interest differential.

C. The Forward Premium Anomaly

To generate the forward premium anomaly we must have that the expected change

in the exchange rate is positively correlated with the risk premium. In the previous two

sections we have developed intuition for how an increase in money growth can lead to both

an expected nominal appreciation and an decrease in the risk premium. Taken together these

effects generate the first necessary condition for the forward premium anomaly namely that

the risk premium is low when the currency is expected to appreciate, that is

cov(Et log et+1 − log et, pt) > 0.(43)

We have also shown under what circumstances the risk premium is variable, which is the

second necessary condition. In this section we give sufficient conditions for the forward

premium anomaly to hold, which as discussed in section 1 is

cov(Et log et+1 − log et, pt) ≥ var(Et log et+1 − log et).(44)

We have
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Proposition 4. The following conditions are sufficient for (44) to hold: i) segmentation

is large enough in that φ satisfies

φ >
ρ

1− ρ
(45)

and ii) segmentation is sensitive enough to money growth in that η satisfies

ηV ar(µ̂t) > 1.(46)

Proof. Using

Et log et+1 − log et = Et logm
∗
t+1 − Et logmt+1

and

pt = Et logm
∗
t+1 −Et logmt+1 − (logEtm

∗
t+1 − logEtmt+1)

we can write (44) as

cov(Et logm
∗
t+1 − Et logmt+1, logEtmt+1 − logEtm

∗
t+1 − (Et logm

∗
t+1 −Et logmt+1)(47)

≥ var(Et logm
∗
t+1 − Et logmt+1).

We can then use the following results to evaluate (47)

Et logm
∗
t+1 − Et logmt+1 = [φ (1− ρ)− ρ] (µ̂∗t − µ̂t)−

1

2
η
³
1− ρ2

´
[(µ̂∗t )

2 − (µ̂t)2](48)

which implies

V ar
³
Et logm

∗
t+1 −Et logmt+1

´
= 2 [φ (1− ρ)− ρ]2 V arµ̂t +

η2

2

³
1− ρ2

´2
V ar(µ̂2t ).(49)

Also, in Appendix C we show that

logEtm
∗
t+1 − logEtmt+1 =(50)
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Et logm
∗
t+1 − Et logmt+1 +

1

2

1

1− ησ2ε

³
V art logm

∗
t+1 − V art logmt+1

´

when 1− ησ2ε > 0 where we can show

V art logm
∗
t+1 − V art logmt+1 = −2σ2ε(φ+ 1)ηρ(µ̂∗t − µ̂t) + σ2εη

2ρ2[(µ̂∗t )
2 − (µ̂t)2].(51)

From (48) we have

V ar
³
Et logm

∗
t+1 −Et logmt+1

´
= [φ (1− ρ)− ρ]2 V ar (µ̂∗t − µ̂t) +

η2

4

³
1− ρ2

´2
V ar(µ̂∗2t − µ̂2t ).

Using (48), (51), and (50) we can write (47) as

[φ (1− ρ)− ρ]

1− ησ2ε
σ2ε(φ+ 1)ηρV ar(µ̂

∗
t − µ̂t)(52)

+
1

4
η
³
1− ρ2

´
σ2εη

2ρ2
1

1− ησ2ε
V ar

³
µ̂∗t
2 − µ̂t

2
´

≥ [φ (1− ρ)− ρ]2 V ar (µ̂∗t − µ̂t) +
η2

4

³
1− ρ2

´2
V ar(µ̂∗2t − µ̂2t )

The inequality (45) ensures that cov(Et log et+1−log et, pt) is positive. Thus, comparing

separately terms on V ar (µ̂∗t − µ̂t) and V ar
³
µ̂∗2t − µ̂2t

´
, we have that (52) holds if

[φ (1− ρ)− ρ] <
ησ2ε

1− ησ2ε
(φ+ 1)ρ(53)

and

³
1− ρ2

´
<

ησ2ε
1− ησ2ε

ρ2.(54)

Notice that these two equations can be written as

φ (1− ρ)− ρ

(φ+ 1)ρ
<

ησ2ε
1− ησ2ε

,
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1− ρ2

ρ2
<

ησ2ε
1− ησ2ε

,

and that for φ > 0 and ρ ∈ (0, 1) ,

φ (1− ρ)− ρ

(φ+ 1)ρ
<
1− ρ

ρ
<
1− ρ2

ρ2
.

Thus if (54) holds, then (53) holds too.

To see that η > (1− ρ2)/σ2ε implies (54) observe that this inequality implies

1

ρ2
<

ησ2ε
(1− ρ2)ρ2

=
ησ2ε

(1− ρ2)
+

ησ2ε
ρ2

.

Thus

1− ησ2ε
ρ2

<
ησ2ε

(1− ρ2)

which implies (54). Q.E.D.

The sufficient conditions (45) and (46) follow naturally from our discussions in the

previous sections on exchange rates and risk premiun. Recall that we found that an increase

in the growth rate of the money supply leads to an expected apreciation and to a decrease

in the risk premium if (40) and ησ2ερ > 0. Notice that (40) is identical to our first sufficient

condition (45). As should be clear, the role of (45) along with ησ2ερ > 0 is to ensure that the

covariance between expected depreciation and the risk premium in (44) is positive.

Condition (46) in the proposition ensures that the variability of the risk premium is

large enough, in the sense that the covariance in (44) is larger than the variance in (44). This

also follows naturally from our discussion of the variability of the risk premium in which we

found that this variability is higher for larger η, ρ and σ2ε.
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6. Some Cross-Section Implications

So far we have focused on the time-series implications of our model. Here we discuss

some cross-section implications. A key mechanism at work in our model is that as the money

growth rate rises so does the inflation rate and thus gains from participating in the asset

market rise. As these gains rise more agents choose to be active and the amount of risk in

the economy falls. In an economy with a high enough mean inflation rate, the risk in asset

markets is sufficiently low that the forward premium anomaly disappears.

More precisely if the distribution of fixed costs is bounded and the risk aversion para-

meter σ > 1, it is easy to show there is some sufficiently inflation rate such that for all rates

higher than that all agents are active and consumption is constant. In this case the model

reduces to a standard one similar to that in Lucas (1982) in which risk premia are constant

and the forward premium anomaly disappears.

Some evidence for this cross-section implication has been given by Bansal and Dahlquist

(2000). They look at a panel of 28 emerging and developed countries and find that the for-

ward premium anomaly is mostly present for the developed countries and mostly absent for

the emerging countries. When they pool their data they find that countries with higher infla-

tion rates tend to have smaller forward premium anomalies, in the sense that the regression

coefficient b in (4) falls with the average inflation rate.

7. Conclusion

We have constructed a simple model with endogenously segmented asset markets and

have shown that these frictions are a potentially important part of a complete model of

exchange rates. Relative to the existing literature we make several contributions. Making
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market segmentation endogenous can lead to risk driving most of the movements in interest

differentials, as it does in the data. Specifically, the model implies that segmentation effects,

and hence risk, vary systematically with the level of inflation. In the time series this feature

implies that exchange rate risk varies systematically with inflation. In the cross section this

feature implies that market segmentation effects are less important in high inflation countries.

As Backus, Foresi, and Telmer (1995) and Engel (1996) have emphasized, standard

monetary models have no chance of producing the forward premium anomaly because they

generate a constant risk premium as long as the underlying driving processes have constant

conditional variances. Backus, Foresi and Telmer argue that empirically it is unlikely that

one can generate this anomaly from having nonconstant conditional variances of the driving

processes. Instead they argue that what is needed is a model that generates nonconstant

risk premia from driving processes that have constant conditional variances. Our model is an

attempt to do exactly that.
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Notes

1The dollar return on a euro bond, (1+ i∗t )et+1/et, is obtained by converting a dollar at

t to 1/et euros, buying a euro bond paying interest 1 + i∗t and then converting the resulting

euros back to dollars at t+ 1 at exchange rate et+1.

2Clearly, this reasoning only depends on the (log of the) exchange rate being approxi-

mately a martingale.

3This puzzle can also be stated in terms of forward exchange rates. To see this note

that the forward exchange rate ft is the price specified in a contract at t in which the buyer

has the obligation to transfer at date t+1 ft dollars and receive 1 euro. The forward premium

is forward rate relative to the spot rate ft/et. Arbitrage implies

log ft − log et = it − i∗t

and thus (2) can be restated as

Cov (log ft − log et, log et+1 − log et) < 0.

Thus, there is a tendency for the forward premium and the expected change in exchange rates

to move in opposite directions. This observation contradicts the hypothesis that the forward

rate is a good predictor of the future exchange rate.
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Appendix A

To obtain (50) we use the following result. If x is normally distributed with mean zero

and variance σ2 and satisfies 1− 2bσ2 > 0, then

E exp
³
ax+ bx2

´
= exp

Ã
1

2

a2σ2

1− 2bσ2
!µ

1

1− 2σ2b
¶1/2

.

To see this note that

E exp
³
ax+ bx2

´
=

1

σ
√
2π

Z
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³
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´
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Now, to derive (50), note that our approximation to the pricing kernel is

logmt+1 = log β − log µ̄− (φ+ 1)µ̂t+1 +
1

2
ηµ̂2t+1 + φµ̂t −

1

2
ηµ̂2t .

Using our assumptions that µ̂t+1 = ρµ̂t + εt+1 and that εt+1 is normal with mean zero and

variance σ2ε, this equation can be written

logmt+1 = log β − log µ̄+ (φ(1− ρ)− ρ) µ̂t −
1

2
η(1− ρ2)µ̂2t + (ρηµ̂t − (φ+ 1)) εt+1 +

1

2
ηε2t+1
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which implies that

Et logmt+1 = log β − log µ̄+ (φ(1− ρ)− ρ) µ̂t −
1

2
η(1− ρ2)µ̂2t +

1

2
ησ2ε

and, since

logmt+1 −Et logmt+1 = (ρηµ̂t − (φ+ 1)) εt+1 +
1

2
ηε2t+1 −

1

2
ησ2ε,

using Etε
4
t+1 = 3σ

4
ε and Etε

3
t+1 = 0, we have

Vart(logmt+1) = (ρηµ̂t − (φ+ 1))2 σ2ε +
3

4
η2σ4ε.

Similarly,

logEtmt+1 = log β − log µ̄+ (φ(1− ρ)− ρ) µ̂t −
1

2
η(1− ρ2)µ̂2t+

logEt exp
µ
(ρηµ̂t − (φ+ 1)) εt+1 +

1

2
ηε2t+1

¶
.

Using the result presented at the beginning of this appendix gives the last term in this

expression as

logEt exp
µ
(ρηµ̂t − (φ+ 1)) εt+1 +

1

2
ηε2t+1

¶
=

1

2

(ρηµ̂t − (φ+ 1))2 σ2ε
1− ησ2ε

− 1
2
log(1− ησ2ε).

Equation (50) then follows directly from these equations.
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