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ABSTRACT

During the Second Industrial Revolution, 1860—1900, many new technologies, including electricity,
were invented. After this revolution, however, several decades passed before these new technologies
diffused and measured productivity growth increased. We build a quantitative model, in which
technology diffusion requires learning, that we use to study this transition to a new economy. Our
main innovation is our method of using micro data on the patterns of birth, growth, and death of
plants in the U.S. economy to quantify the parameters of the learning process. Our model generates
both slow diffusion and a delay in growth after the Second Industrial Revolution similar to that in
the data. Our model casts doubt, however, on the conjecture that this experience is a useful parallel
for understanding the productivity paradox after the Information Technology Revolution.
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The period 1860—1900 is often called the Second Industrial Revolution because of the

large number of technologies invented during that time. Historians such as Schurr et al.

(1960), Rosenberg (1976), Devine (1983), and David (1990, 1991) focus on the development

of new technologies based on electricity that began in the Second Industrial Revolution as the

driving force behind the rapid technical change in manufacturing that continued throughout

the 20th century. This revolution led eventually to a new economy, characterized by faster

growth in productivity, as measured by output per hour. Following this revolution, however,

there was a delay of several decades before these new technologies diffused widely among

manufacturing plants and this new economy appeared. David (1990) refers to this slow

transition to a new economy after the Second Industrial Revolution as a productivity paradox.

This slow transition is indeed paradoxical from the viewpoint of the standard growth model.

In this model, technologies are disembodied, new technologies diffuse instantly, and faster

technical change results immediately in faster growth of measured productivity.

We evaluate the ability of hypotheses put forward by David (1990) and other histori-

ans to quantitatively explain the slow transition to a new economy that followed the Second

Industrial Revolution. We do so by building a quantitative model of technology diffusion

intended to capture the main elements of the historians’ hypotheses, including David and

Wright’s (1999, p. 4) hypothesis that “the slow pace of adoption [of electric power] prior to

the 1920s was largely attributable to the unprofitability of replacing still serviceable manu-

facturing plants embodying production technologies adapted to the old regime of mechanical

power derived from water and steam.”

Our model builds in three key assumptions motivated by the hypotheses of these

historians.



• New plants embody new technologies.1 This assumption is motivated by the work of

Devine (1983) and David (1990, 1991), who argue that manufacturing plants needed to

be completely redesigned in order to make good use of the new technologies stemming

from the development of electric power.

• Improvements in the technology for new plants are ongoing. Specifically, we model

the transition to a new economy after the Second Industrial Revolution as arising

from a once-and-for-all increase in the rate of improvement in the frontier technology

embodied in the design of new plants. This assumption is meant to capture the

arguments of Devine (1990) and Sonenblum (1990) that the process of improving

efficiency through changes in factory design after the Second Industrial Revolution

continued for decades, through at least the 1980s, and lay behind the new economy

after this revolution.

• New plants improve their technology through an extended period of learning. This as-

sumption is consistent with a broad body of work on learning as well as the discussion

in Chandler (1992). We use micro data on plants to argue that substantial learning

at the plant level continues for at least 20 years.

(For a more detailed discussion of the links between the historical analyses and our model,

see Appendix A.)

We pose this quantitative question: When the parameters of our model are set to match

micro data on the learning process at the plant level, can the model generate the observed slow

diffusion of electricity and the slow transition to a new economy after the Second Industrial

Revolution? We find that it can. The model generates the slow improvement in productivity
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growth because agents slowly abandon plants embodying old technologies in which they have

built up knowledge for new plants embodying new technologies that will be fully productive

only after an extended period of learning.

Our main conceptual innovation here is our method of using micro data on the life

cycle patterns of plants in the U.S. economy–their birth, growth, and death–to uncover

the parameters of the learning process at the plant level. Our method is motivated by two

observations from the micro data. One is that the size of plants–as measured by the share of

the manufacturing labor force employed in each new cohort of manufacturing plants–tends

to grow substantially for at least 20 years. The other is that the average productivity of labor

and capital in these plants relative to that of other plants neither rises nor falls substantially

with age.

We propose the simplest model of learning that matches these two observations. We

model learning as changes in plant-specific productivity. We allow labor and capital to flow

to equate marginal products across plants, and we assume Cobb-Douglas production. In our

model, as a plant’s specific productivity increases, the plant grows by adding labor and capital

so as to keep the marginal products of its factors equal to those of other plants. Hence, the

observation that the employment share in a cohort of plants grows substantially for at least

20 years implies that the average of their specific productivities does as well. We thus infer

that the amount of learning is substantial and that learning extends at least over this time

period. The Cobb-Douglas assumption implies that, even though plants undergo substantial

growth in their specific productivities as they age, they show no growth in their average labor

and capital productivity relative to other plants. This leads our model to be consistent with

the observation that the average productivity of plants neither rises nor falls substantially
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with age. (The idea of linking specific productivity and size is familiar from Hopenhayn and

Rogerson 1993.)

Our method of measuring learning at the plant level contrasts sharply with the stan-

dard approach in the learning literature, exemplified by the work of Bahk and Gort (1993).

These researchers associate learning in a plant with changes in the average productivity of

labor and capital at that plant relative to other plants. In the context of our model, their

approach is conceptually flawed. Indeed, if it were applied to our model, it would find no

learning at all, regardless of how much learning was actually going on. Our approach to

measuring learning is one of the features that distinguish our work from related models of

transition based on embodiment and learning, including those of Hornstein and Krusell (1996)

and Greenwood and Yorukoglu (1997).

When the parameters of our model are set using our method, the model’s predictions

match the U.S. data surprisingly well. The model’s path of diffusion of new embodied tech-

nologies is similar to the data’s path of diffusion of electric power in U.S. manufacturing

plants during 1869—1939. The model’s trends in the growth of output per hour are similar

to the data’s for 1869—1969. We find it intriguing that the model matches these data so well

even though we did not attempt to replicate any features of the transition after the Second

Industrial Revolution when we chose the parameters of the learning process.

We then demonstrate that all of our three key assumptions are necessary for our

model to generate the slow diffusion and slow transition to a new economy. We show that

if most of the increase in the pace of technical change comes from new technologies that

are not embodied in plants but rather are disembodied, as they are in the standard growth

model, then the transition is almost immediate. To generate a new economy with a higher
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growth rate of output, we must assume that the increase in the pace of technical change is

ongoing. And without learning at the plant level, the model generates a rapid diffusion of

new technologies and a rapid transition.

Having shown that the model can account for the slow transition after the Second

Industrial Revolution, we use the model to study David’s (1990) additional conjecture that

this experience is a useful parallel for understanding the slow transition after the more recent

Information Technology Revolution. We find that it is not. The model predicts, counter-

factually, that the transition after the Information Technology Revolution should be fast.

This is because in the model, when the pace of technical change is relatively fast in an old

economy, as the data show was true before the recent revolution, the diffusion of new tech-

nologies is also fast, and manufacturers build up only a relatively small amount of knowledge

about a given technology. At the start of a transition from such an old economy, therefore,

manufacturers are willing to quickly abandon this small stock of knowledge in order to adopt

a superior technology. Of course, in the data, the transition appears to have been quite

slow. Apparently, another approach is required in order to explain the experience after the

Information Technology Revolution. In our conclusion, we discuss how one might modify the

model to account for this more recent productivity paradox.

Our study is related to several strands of literature that we discuss after we present

the model and the results.
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1. Diffusion and Productivity Growth
After the Second Industrial Revolution

Many of the technologies that had a profound impact on living standards in the 20th

century were invented between 1860 and 1900. These technologies include electricity, the

internal combustion engine, petroleum and other chemicals, telephones and radios, and indoor

plumbing. (For a description of technological inventions during this time, see Gordon 2000a.)

While all of these inventions undoubtedly had a substantial economic impact, we follow Schurr

et al. (1960, 1990), Rosenberg (1976), Devine (1983), and David (1990, 1991) and focus on

the new technologies based on electricity.

In this section, we document the gradual diffusion of electric power in U.S. manufac-

turing over the period 1869—1939 and the gradual increase in the growth of productivity–

output per hour–in U.S. manufacturing over the period 1869—1969. (We choose 1869 as the

starting point because the early data are derived from the U.S. Census Bureau’s censuses of

manufacturing establishments, which are taken every decade starting in 1869.)

To document the slow diffusion of electricity, in Figure 1 we plot the fractions of

mechanical power in U.S. manufacturing establishments that are derived from water, steam,

and electricity during 1869—1939. (These data are from Table 3 in Devine 1983.) Before

1899, more than 95% of mechanical power was derived from water and steam. Between 1899

and 1929, electricity use gradually replaced water and steam, so that by 1929, over 75% of

mechanical power was electric. If we measure the diffusion of electricity starting in 1869, then

we see that it took 50 years for electricity to provide 50% of mechanical power. This measure

of the speed of diffusion is sensitive to the choice of starting date. A measure of the speed of

diffusion that is less sensitive to that choice is the time required for a technology to diffuse
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from 5% to 50%. For electricity in U.S. manufacturing, this occurred in about 20 years, from

1899 to 1919.

To document the consequent gradual increase in productivity growth, in Figure 2 we

plot annual output per hour in U.S. manufacturing over the period 1869—1969. (These data

are from the U.S. Department of Commerce 1973.) We also show in this figure linear trends

for the three periods 1869—99, 1899—1929, and 1949—69. (These periods are chosen to omit

the Great Depression and World War II.) The trend growth rates of output per hour in these

three periods increase gradually, from 1.6% to 2.6% to 3.3%. (Gordon 2000b documents a

similar gradual acceleration for the growth of output per hour for the U.S. economy as a

whole.)

2. A Model of Technology Diffusion

Here we describe the model we use to generate a transition to a new economy. In

the model, time is discrete and is denoted by periods t = 0, 1, 2, . . . . The economy has two

types of agents: workers and managers. There exist a continuum of size 1 of workers and a

continuum of size 1 of managers.

Workers are each endowed with one unit of labor per period, which they supply in-

elastically. Workers are also endowed with the initial stock of physical capital and ownership

of the plants that exist in period 0. Workers have preferences over consumption given by

P∞
t=0 β

t log(cwt), where β is the discount factor. Given sequences of wages and intertemporal

prices {wt, pt}∞t=0, initial capital holdings k0, and an initial value a0 of the plants that exist

in period 0, workers choose sequences of consumption {cwt}∞t=0 to maximize utility subject to
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the budget constraint

∞X
t=0

ptcwt ≤
∞X
t=0

ptwt + k0 + a0.(1)

Managers are endowed with one unit of managerial time in each period. Managers have

preferences over consumption given by
P∞

t=0 β
t log(cmt). Given sequences of managerial wages

and intertemporal prices {wmt, pt}∞t=0, managers choose consumption {cmt}∞t=0 to maximize

utility subject to the budget constraint
P∞

t=0 ptcmt ≤ P∞
t=0 ptwmt. Notice that we have given

all the initial assets to the workers. Since worker and manager utilities are identical and

homothetic, aggregate variables do not depend on the initial allocation of assets.

Production in this economy is carried out in plants. In any period, a plant is char-

acterized by its specific productivity A and its age s. We refer to the pair (A, s) as the

plant’s organization-specific capital, or simply its organization capital. This pair summarizes

the built-up knowledge that distinguishes one organization from another.

To operate, a plant uses one unit of a manager’s time, physical capital, and (workers’)

labor as variable inputs. If a plant with specific productivity A operates with one manager,

capital k, and labor l, then the plant produces output

y = zA1−νF (k, l)ν,(2)

where the function F is linearly homogeneous of degree 1 and the parameter ν ∈ (0, 1). Notice

that this technology implies that there are decreasing returns at each plant but constant

returns for the economy as a whole. The technology parameter z is common to all plants and

grows at an exogenous rate. We call z economy-wide productivity. Following Lucas (1978, p.

511), we call ν the span of control parameter of the plant’s manager. The parameter ν may
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be interpreted more broadly as determining the degree of diminishing returns at the plant

level.

The timing of events in period t is as follows. The decision whether to operate or not is

made at the beginning of the period. Plants that do not operate produce nothing; the organi-

zation capital in these plants is lost permanently. Plants with organization capital (A, s) that

do operate, in contrast, hire a manager, capital kt, and labor lt and produce output according

to (2). At the end of the period, operating plants draw independent multiplicative innova-

tions, or shocks, � to their specific productivity, with probabilities given by age-dependent

distributions {πs}. Thus, a plant with organization capital (A, s) that operates in period t

has stochastic organization capital (A�, s+ 1) at the beginning of period t+ 1.

Consider the process by which a new plant enters the economy. Before a new plant

can enter in period t, a manager must spend period t− 1 preparing and adopting a plan, or

blueprint, for constructing the plant that determines the plant’s initial specific productivity

τ t. Blueprints adopted in period t−1 embody the frontier technology regarding the design of

plants at that point in time. These frontier blueprints evolve exogenously, according to the

sequence {τ t}∞t=0. Thus, a plant built in t− 1 starts period t with initial specific productivity

τ t and organization capital (A, s) = (τ t, 0).

We assume that capital and labor are freely mobile across plants in each period. Thus,

for any plant that operates in period t, the decision of how much capital and labor to hire

is static. Given a rental rate for capital rt, a wage rate for labor wt, and a managerial wage

wmt, the operating plant chooses employment of capital and labor to maximize static returns:

max
k,l

ztA
1−νF (k, l)ν − rtk − wtl − wmt.(3)

9



The static returns to the owner of a plant with organization capital (A, s) in t are given

by dt(A) − wmt, where dt(A) = ztA
1−νF(kt(A), lt(A))ν − rtkt(A) − wtlt(A) denotes static

returns plus payments to managers and kt(A) and lt(A) are the solutions to this problem.

Let yt(A) = ztA
1−νF(kt(A), lt(A))ν denote the associated output of the plant.

The decision whether or not to operate a plant is dynamic. This decision problem is

described by the Bellman equation

Vt(A, s) = max [0, V
c
t (A, s)](4)

V c
t (A, s) = dt(A)− wmt +

pt+1
pt

Z
�
Vt+1(A�, s+ 1)πs+1(d�),

where the sequences {τ t, wt, rt, wmt, pt}∞t=0 are given. The value Vt(A, s) is the expected

discounted stream of returns to the owner of a plant with organization capital (A, s). This

value is the maximum of the returns from closing the plant and those from operating it. The

term V c
t (A, s), the expected discounted value of operating a plant of type (A, s), consists of

current returns dt(A) − wmt and the discounted value of expected future returns Vt+1(A, s).

The plant operates only if the expected returns V c
t (A, s) from operating it are nonnegative.

The decision whether or not to hire a manager to prepare a blueprint for a new plant

is also dynamic. In period t, this decision is determined by the equation

V 0
t = −wmt +

pt+1
pt

Vt+1(τ t+1, 0).(5)

The value V 0
t is the expected stream of returns to the owner of a new plant, net of the

cost wmt of paying a manager to prepare the blueprint for the plant. Managers are hired to

prepare blueprints for new plants only if V 0
t ≥ 0. Since there is free entry into the business

of starting new plants, in equilibrium we require that V 0
t ≤ 0. We summarize this condition
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as V 0
t φt = 0, where φt ≥ 0 denotes the measure of managers preparing blueprints for new

plants in t.

Let µt denote the measure at the beginning of period t of organization capital across

plants that might operate in that period, where µt(A, s) is the measure of plants of age s

with productivity less than or equal to A. Denote the measure of plants that operate in t by

λt(A, s). This measure is determined by µt and the sign of the function V c
t (A, s) according

to

λt(A, s) =
Z A

0
1V c(a, s)µt(da, s),

where 1V c(a, s) = 1 if V c
t (a, s) ≥ 0 and 0 otherwise. For each plant that operates, an

innovation to its specific productivity is drawn, and the distribution µt+1 is determined from

λt, φt, {πs} , and {τ t} as follows:

µt+1(A
0, s+ 1) =

Z
A
πs+1(A

0/A)λt(dA, s)(6)

for s ≥ 0, where A0 denotes specific productivity at t+ 1 and µt+1(τ t+1, 0) = φt.

Now let kt denote the aggregate physical capital stock. Then the resource constraints

for physical capital and labor are
P

s

R
A kt(A)λt(dA, s) = kt and

P
s

R
A lt(A)λt(dA, s) = 1.

The resource constraint for aggregate output is cwt + cmt + kt+1 = yt + (1− δ)kt, where δ is

the depreciation rate of capital and yt is defined by yt =
P

s

R
A yt(A)λt(dA, s). The resource

constraint for managers is

φt +
X
s

Z
A
λt(dA, s) = 1.(7)

In equilibrium, the value of the workers’ initial assets, or the initial value of plants, is a0 =

P
s

R
A V0(A, s)µ0(dA, s).
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Given a sequence of frontier blueprints and economy-wide productivities {τ t, zt}, ini-

tial endowments k0 and a0, and an initial distribution of organization capital across plants

µ0, an equilibrium in this economy is a collection of sequences of consumption and aggre-

gate capital {cmt, cwt, kt} ; allocations of capital and labor across plants {kt(A), lt(A)}; mea-

sures of operating plants, potentially operating plants, and managers preparing blueprints

for plants {λt, µt, φt}; value functions and operating decisions {dt, Vt,V c
t , V

0
t }; and prices

{wt, rt, wmt, pt, }, all of which satisfy the above conditions.

In this equilibrium, the dynamic decision of whether to operate a plant has a simple

form.

Proposition 1. In each period t, the decision to operate a plant is summarized by an age-

dependent cutoff rule A∗t (s). In period t, plants of age s with specific productivity A ≥ A∗t (s)

continue operating, and those with A < A∗t (s) close.

Proof. The proof follows from the result that the expected returns from operating a

plant in period t, V c
t (A, s), are increasing in the plant’s current productivity A for each age s.

Clearly, current returns dt(A) are increasing in A. Also, since At+1 = Atεt, the distribution of

a plant’s productivity at t+ 1 is increasing in its productivity at t, in the sense of first-order

stochastic dominance. The result that the value functions Vt+1(A, s) are nondecreasing in A

then follows. Thus, V c
t (A, s) is increasing in A for each age s. Letting A∗t (s) be defined by

V c
t (A, s) = 0, the result follows. q.e.d.

To get a sense of the process for the birth, growth, and death–or the life cycle–of

plants which our model generates, consider Figure 3. Here we show the evolution of the

specific productivity of two plants that both enter in period t =1860. Both of these plants
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start with productivity equal to that of the frontier blueprint in 1860, namely, τ1860. This

frontier blueprint grows exogenously over time at a constant rate as shown by the straight

line labeled log τ t. The two plants each experience random shocks to their plant-specific

productivity drawn from age-dependent distributions πs. Plant 1 is relatively lucky in that

it draws especially favorable shocks to its specific productivity, while plant 2 is relatively

unlucky.

In every period, each plant makes a decision whether to continue or to close, or exit.

This decision is based on a comparison of the plant’s current specific productivity and its

future prospects for learning determined by πs relative to the alternative of exiting and

starting a new plant with the current frontier blueprint. The decision is summarized by an

age-dependent cutoff rule as described in Proposition 1. Plant 1 has relatively high specific

productivity; hence, it exits only after operating 30 years. In contrast, plant 2 has relatively

low specific productivity; it exits much sooner. After each of these plants exits, the manager

of the plant starts a new plant with the current frontier blueprint and begins the process of

building up specific productivity in the new plant.2

In our model, technologies embodied in plants diffuse as new plants embodying these

technologies are born and grow. Figure 3 also illustrates the mechanics of this diffusion.

In 1863, the manager of plant 2 decides to exit and start a new plant that embodies the

frontier blueprint of 1864 and then begins to learn with that new technology. Likewise, in

1890 the manager of plant 1 decides to exit and start a new plant that embodies the frontier

blueprint of 1891 and then begins to learn with that new technology. In this manner, new

plants embodying new technologies gradually replace old ones. Since our model has many

such plants, each with different shocks to specific productivity, this diffusion of new embodied
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technologies occurs smoothly over time.

Formally, we measure the diffusion of embodied technologies as follows. Let

yt,s =
Z
A

yt(A)

yt
λt(dA, s)

denote the fraction of total output yt produced in plants of age s and

Dt,t+k =
kX

s=0

yt,s(8)

be the fraction of total output yt produced in plants of age k and younger. We measure the

diffusion in period t+k of embodied technologies developed in period t or later by the Dt,t+k,

which, in the model, is the fraction of output produced in plants using technologies developed

in period t or later.

3. Measuring Learning

The process governing learning is a key determinant of the rate that a new technology

is adopted. In our model, learning at the plant level is represented by shocks to the plant’s

specific productivity. We argue here that data on plant size can uncover these shocks. We

first document that plants grow as they age while their average productivity remains roughly

constant. We then discuss how theory links plant-specific productivity to plant size and

contrast our approach to the standard approach taken in the literature on learning. Finally,

we discuss how we implement our method of measuring learning.

A. The Data on Plant Age, Size, and Average Productivity

Here we provide evidence on the two observations from the U.S. micro data on plants

that motivate our model of learning.

14



The first observation is that plants grow substantially as they age. There is both

cross-section and panel evidence on this point. In terms of the cross-section evidence, we

look at the relative number of people employed by plants as they age. In Figure 4, we

plot employment shares by plant cohorts from the 1988 panel of the U.S. Census Bureau’s

Longitudinal Research Database (LRD).3 In the data, the employment share of plants rises

at least for the first 20 years of a plant’s life. Note that the employment share of a cohort of

plants of age 20 is more than seven times that of the cohort of brand new plants.

In terms of the panel evidence, we present data from Jensen, McGuckin, and Stiroh

(2001) to show that the employment share of a cohort of plants starts small and grows with

age relative to the total employment in manufacturing. Jensen, McGuckin, and Stiroh use

the LRD to construct a balanced panel of manufacturing plants for 1963—92. These plants

are organized into cohorts that enter in a given five-year period. Plants are included in the

sample only if they survive for the entire period of the panel. In Figure 5, we plot the ratio of

average hours worked relative to the industry average for each of five such cohorts of plants.

Clearly, the employment share in plants starts relatively small and grows steadily with age.

Moreover, this pattern is evident for each of the five cohorts of plants.

The second observation behind our model of plant learning is that, after industry

effects are controlled for, the average productivity of capital and labor does not vary sys-

tematically with plant age or size. This is documented by Bartelsman and Dhrymes (1998)

and Jensen, McGuckin, and Stiroh (2001). Bartelsman and Dhrymes (1998) study a sample

of manufacturing plants drawn from the U.S. Census Bureau’s LRD. For this sample, they
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report a geometric weighted-average of capital and labor productivity:

µ
yit
lit

¶1−α µyit
kit

¶α
.

They calculate this weighted-average by age category and size decile as measured by the

average level of employment over the period 1972—86, where the weights are obtained from

a regression of outputs on inputs. We graph their values for this measure by age categories

and size deciles in Figure 6. While Bartelsman and Dhrymes (1998) find variations in this

measure across individual plants, Figure 6 shows no systematic relationship between their

measure of average productivity and either age or size. Likewise, Jensen, McGuckin, and

Stiroh (2001) report that after about 5—10 years, all cohorts of surviving plants have similar

productivity levels.

B. The Link Between Plant Size and Plant-Specific Productivity

Our model implies a tight link between plant size and plant-specific productivity.

To see this as simply as possible, consider a stripped-down version of our model in

which the output in each plant i = 1, . . . , N in period t is given by

yit = ztA
1−ν
it lνit,(9)

where a plant’s productivity Ait may depend on its age. Profit maximization implies that

plants equate their marginal products; thus, in equilibrium,

lit
lt
=

Ait

At

,(10)

where lt =
P

i lit is aggregate employment and At =
P

iAit is the aggregate of specific

productivities of all plants. Thus, employment in plant i relative to aggregate employment

is equal to the specific productivity of plant i relative to aggregate specific productivity.
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In our model with physical capital, a similar result holds for individual plants and for

cohorts of plants. To establish this result, consider the static problem of allocating a given

amount of capital and labor across plants at a point in time. For a given distribution λt of

organization capital, it is convenient to define

nt(A) =
A

Āt

(11)

as the size of a plant of type (A, s) in period t, where

Āt =
X
s

Z
A
Aλt(dA, s)(12)

is the aggregate of the specific productivities across all plants. The variable nt(A) measures

the size of the plant in terms of its capital or labor or output, in that the equilibrium

allocations are

kt(A) = nt(A)kt, lt(A) = nt(A)lt, and yt(A) = nt(A)yt.(13)

To see this, note that since the production function F is homogeneous of degree 1, all op-

erating plants in this economy use physical capital and labor in the same proportions. The

proportions are those that satisfy the resource constraints for capital and labor.

Now define the aggregate of the specific productivities of a cohort of plants of age s as

Āt,s =
R
AAλt(dA, s). Note from (11) that Āt,s/Āt =

R
A nt(A)λt(dA, s). Using (13), we then

have this:

Proposition 2. The aggregate of specific productivities of plants of age s relative to that

of all plants is equal to the share of total employment in those plants; that is, Āt,s/Āt = lt,s,

where

lt,s =
Z
A

lt(A)

lt
λt(dA, s).(14)
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Given this proposition, we can use the data on employment shares by cohorts, lt,s, to

infer the pattern of learning, as measured by Āt,s/Āt. From the perspective of our model,

the LRD data in Figure 4 imply that the aggregate of specific productivities of a cohort of

plants grows faster than aggregate productivity for at least 20 years. Since in the data the

employment share of a cohort of plants of age 20 is more than seven times that of brand new

plants, our model implies that plants which survive 20 years are, at that age, much more

productive not only than they were when they were first built, but also than brand new

plants in that 20th year. Thus, for a relatively long period of time, the ongoing innovations

that occur within an operating plant on average are much larger than the innovations from

the frontier technology. In this sense, 20-year-old plants are much less outdated than their

contemporary brand new plants.

It is important to realize that the link between the employment shares lt,s and relative

productivities Āt,s/Āt established in Proposition 2 is independent of any changes or trends

in overall employment lt. Hence, the fact that in the data there are trends in manufacturing

employment–increasing in the first part of the century and decreasing in the second part–

has no bearing on our method of inferring learning from employment shares.

We have used employment shares to infer the amount of learning that plants experience

as they age. We can also use them to infer the speed of diffusion of new technologies. In (8)

we have defined diffusion in terms of output. Clearly, from (13), this diffusion is equal to the

fraction of labor employed in plants using these technologies, so that

Dt,t+k =
kX

s=0

lt,s.(15)
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C. A Contrast With the Literature on Learning

We have argued that theory implies that the plant-specific, or organization-specific,

component of productivity can be uncovered from data on the relative size of organizations.

Other researchers have not used these data to infer learning. Instead, Jovanovic and Nyarko

(1995), Hornstein and Krusell (1996), Cooley, Greenwood, and Yorukoglu (1997), Greenwood

and Yorukoglu (1997), and others rely on estimates of learning at the plant level made by

Bahk and Gort (1993). We argue that these estimates are based on a conceptually flawed

analogy to the early literature on learning for individuals performing specific tasks or groups

of individuals performing a given number of tasks.

This early literature shows that in a wide variety of tasks, an individual’s average

productivity increases with the number of times that task is performed. Bahk and Gort’s

(1993) approach is based on the reasoning that because this is true for individuals, it should

be true for groups of individuals, or organizations: average labor productivity in an organi-

zation should increase as the plant produces more output. Specifically, Bahk and Gort run a

regression at the plant level of plant output on plant inputs and some measure of experience

and interpret the coefficient on the experience variable as measuring the extent of learning.

Unfortunately, this approach is valid only if the movement in plants’ inputs is essentially

unrelated to their specific productivity. Theory, however, predicts precisely the opposite, as

the following example makes clear.

Consider running Bahk and Gort’s regression in a simplified version of our model.

In this simplified model, let output in plant i in period t be given by (9), so that relative

employment in this plant is given by (10). Hence, taking logs of (9) and substituting for Ait
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from (10) gives that, in equilibrium,

log yit = log[zt(At/lt)
1−ν] + log lit.(16)

We can use (16) to calculate the coefficients in the following regression, of the form used by

Bahk and Gort (1993):

log yit = β1t + β2 log lit + β3xit,

where xit is some measure of the age or past production of the plant. This regression nec-

essarily yields estimates of β3 = 0 along with β1t = log[zt(At/lt)
1−ν] and β2 = 1. Bahk and

Gort’s interpretation of β3 = 0 would be that there is no learning at the plant level. This is

true regardless of the amount that specific productivity Ait rises with age.

Notice also that in the equilibrium of the model, (16) implies that labor productivity

is given by yit/lit = zt(At/lt)
1−ν and, hence, is constant across all plants, regardless of their

specific productivity Ait. This observation points to the key difference between the impli-

cations for learning by an individual and that of an organization which can add variable

factors. Individuals who learn increase their labor productivity. Organizations that learn

grow by adding variable factors so as to keep their labor productivity constant (at least with

Cobb-Douglas production). Hence, we argue that the key variable to look at to determine

the amount of learning, or built-up knowledge or organization-specific capital, is not some

measure of either capital or labor productivity but rather some measure of relative size.

D. Choosing the Learning Parameters

We choose the parameters governing the shocks to specific productivity so that the

model matches data on the fraction of the labor force employed in plants of different age

20



groups, as well as data on job creation and job destruction in plants of different age groups,

from the 1988 panel of the U.S. Census Bureau’s LRD.4 We choose the data from this panel

because it has the most extensive breakdown of plants by age. We solve for the equilibrium of

the model, including the exit decisions, and choose parameters so that the simulated moments

from the model match those in the data. We need to solve for the equilibrium of the model

in order to set the learning parameters because plants exit.

To get some intuition for how our procedure for choosing parameters works, it is useful

to simply suppose, for a moment, that plants never exit. In such a case, there is a simple map

between the underlying parameters of the learning process and data on employment shares

and job creation and destruction of different age cohorts. We discuss this case in detail below

because it is useful for building intuition for our procedure. We then describe the details of

our procedure which deals with the relevant case in which plants do exit. In this case, we

must solve for the entire equilibrium to choose the learning parameters.

The Case of No Exit

Suppose that plants never exit. In such a case, it is simple to choose the learning

parameters since (11) implies that the size of a plant is directly proportional to its specific

productivity. Hence, we can directly infer the dynamics of specific productivity from the

dynamics of measured plant size.

Specifically, since the shocks to specific productivity εis for plant i from cohort s satisfy

A0is+1 = εisAis, (13) implies that

lis+1
lis

ls
ls+1

=
Ais+1

Ais

Ā

Ā0
= εis

Ā

Ā0
,(17)

where a prime denotes the next period’s value. Hence, in an economy with no exit, the
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distribution of the growth of relative employment for all plants in an age cohort s gives the

whole distribution πs of the shocks to specific productivity to that cohort up to the scalar

Ā/Ā0, reflecting aggregate productivity growth.

To see how we can use data on employment shares, job creation, and job destruction in

different age groups to set the learning parameters, suppose that the distribution of specific

productivity shocks πs is lognormal. Specifically, let log εis ∼ N(µs, σs), where µs and σs

denote the age s—dependent mean and standard deviation of these shocks. Here we need only

set the parameters µs and σs.

Data on employment shares are linked to these parameters as follows. Since shocks ε

are independent over time, the growth rate from one period to the next of the fraction of the

labor force employed in an age group is the mean of the distribution πs up to a correction

for growth in aggregate productivity. In particular, in a steady state,

ls+1
ls
=
exp(µs + σ2s/2)

1 + gA
,(18)

where ls is the steady-state employment of the cohort of age s, 1 + gA is the steady-state

growth rate of Āt, and exp(µs + σ2s/2) is the mean of πs.

Data on job creation and destruction are linked to the learning parameters as follows.

Job creation in a cohort of plants of age s is a measure of the dispersion of the distribution

of specific productivity shocks πs. In a steady state, any plant with a specific productivity

shock greater than the growth of average productivity creates jobs. Hence, in an economy

with no exit, the job creation rate for the cohort of plants of age s is

Cs =
Z
ε>1+gA

Ã
ε

1 + gA
− 1

!
πs(dε),(19)
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which is some simple function, say, H(µs, σs), of the underlying parameters µs and σs. Job

destruction is a similar measure of dispersion.

In sum, for any cohort s, we can use data on employment shares (ls+1/ls) and job

creation rates Cs to back out the underlying learning parameters µs and σs.

The Case of Exit

The actual procedure we use to choose parameters is conceptually similar to that when

plants never exit, but that procedure must be adjusted to deal with the fact that both in

the model and in the data, plants do exit. This possibility of exit introduces a selection

issue because the observed distribution of sizes is an endogenously truncated version of the

distribution of plant-specific productivities. To deal with this endogenous selection issue, we

need to solve the equilibrium of the model to solve for the exit decision. In practice, we choose

the parameters µs and σs so that, in equilibrium, the model’s predictions for employment

shares, job creation, and job destruction of plants of different cohorts match the data. We

explain this procedure in detail in Appendix B.5

In Figure 7, we display graphs which demonstrate how well our model with our chosen

parameters reproduces the U.S. data. We plot actual employment and rates of job creation

and destruction for U.S. manufacturing establishments in 1988, for plants of various ages,

along with the comparable statistics generated by our model. The model with our chosen

parameter values can reproduce these features of the data fairly well. For completeness,

note that the implied statistics for the overall job creation and destruction rates expressed

as percentages of total employment are 8.3% and 8.4% for the data and 9.9% and 9.9% in

the model. The differences between the overall job creation and destruction rates in the data
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and the model are not large compared to the fluctuation in these rates in annual data for the

period 1972—93. The standard deviations of the job creation and job destruction rates over

that period are 2.0 and 2.7.

In Figure 8, we display measures of the learning parameters themselves. We plot the

mean shock to the size of the cohort of plants of age s relative to the industry average size,

µs− gA. Here µs is the mean of the log of specific productivity shocks and gA is the growth of

average productivity. For the first 20 years, µs is greater than gA, so that plants in cohort s

grow relative to the industry average, while after that, they shrink. We also plot the standard

deviations of the shocks to the log of specific productivity, which also equals the standard

deviation of the shocks to the log of plant size. As the figure shows, these are roughly constant

with age.

4. Choosing the Macro Parameters

Our choice of macro parameters is standard. The growth rate of output per hour g,

the physical capital share νθ, and the depreciation rate δ are chosen to reproduce data on the

U.S. manufacturing sector. We set g = 3.3% to match the growth of manufacturing output

per hour in 1949—69, as reported in Figure 2. We use data for 1959—99 obtained from the U.S.

Department of Commerce’s national income and product accounts to set νθ = 18.4% and

δ = 7.7%, based on methodology described by Atkeson and Kehoe (2002). We set β = 0.977,

so that the steady-state interest rate i defined by 1 + i = (1 + g)/β is 5.7%.

Consider next the growth of the Solow residual. The steady-state growth rate of output

per worker, 1 + g, is related to the growth of the Solow residual by (1 + g)1−νθ, which can

be decomposed as (1 + g)1−νθ = (1 + gz)(1 + gτ)
1−ν, where gz and gτ are the growth rates of
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disembodied technology zt and the frontier technology τ t. Given our choices of g = 3.3% and

νθ = 18.4%, using (1 + g)1−νθ = 1.027 implies that the growth of the Solow residual is 2.7%.

Since we calibrate our model to reproduce observations on plant size, the steady state is not

affected by the decomposition of the Solow residual into these components.

Finally, consider the span of control parameter ν. Hundreds of studies have estimated

production functions with micro data. These analyses incorporate a wide variety of assump-

tions about the form of the production technology and draw on cross-section, panel, and time

series data from virtually every industry and developed country. Douglas (1948) and Walters

(1963) survey many studies. Atkeson, Khan, and Ohanian (1996) review this literature and

present evidence, in the context of a model like ours, that ν = 0.85 is a reasonable value for

this parameter. We use this value in our main analysis, but we also explore the sensitivity of

our results to alternative values.

5. The Transition to a New Economy

Now we use our quantitative model to simulate the transition to a new economy with

a permanently faster pace of technical change. We think of this simulation as a quantification

of the hypotheses of Devine (1983), David (1990), David and Wright (1999), and others for

the slow transition after the Second Industrial Revolution.

In the simulation, the increase in technical change is driven by faster growth in the

frontier blueprints for new plants. We think of this faster growth of the frontier blueprints as

capturing the faster pace of technical change embodied in plant design after the development

of electric power. We find that the process of replacing old plants based on old blueprints

with new plants is gradual. As a result, new embodied technologies diffuse slowly, and there
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is a substantial delay before the increase in the pace of technical change leads to faster growth

of output per hour. We then show that the rate of diffusion gradually accelerates from the

old economy to the new one and argue that this implication is broadly consistent with the

data. Finally, we use our model to isolate the economic forces that are essential in generating

slow diffusion and transition. We repeat our transition experiment under alternative sets of

assumptions to show the importance of our three key assumptions and the role of built-up

knowledge.

A. The Transition Experiment

Consider an economy that is on a balanced growth path, with steady growth in the

frontier blueprints causing output to grow 1.6% per year. This growth rate is the trend growth

rate of output per hour in U.S. manufacturing for 1869—99 shown in Figure 2. We denote

this initial growth rate of the frontier blueprints by goldτ . In our experiment, we suppose that

at the beginning of the period labeled 1869, agents learn that the growth rate of the frontier

blueprints increases once and for all, so that on the new balanced growth path, output grows

3.3% per year (as in the U.S. data for 1949—69). We denote this new growth rate of the

frontier blueprints by gnewτ . We refer to these two balanced growth paths as the old and new

economies, respectively.

In our experiment, we set the initial capital-output ratio and the distribution of orga-

nization capital across plants to be those from the balanced growth path of the old economy.

In setting this initial distribution of organization capital, we assume that the distributions of

the shocks to specific productivity are the same as those we estimated from the U.S. micro

data for 1988.
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Note, especially, two characteristics of this experiment. One is that the initial condi-

tions for the experiment do not depend on the relative importance of embodied and economy-

wide technical change in the old steady state. The other notable characteristic has to do with

the fact that in the experiment, the shocks to specific productivities are held fixed while the

growth rates of the frontier blueprints are varied. This amounts to assuming that the process

of learning about any particular embodied technology does not depend on the rate at which

new embodied technologies appear.

Consider now the diffusion of new technology during the transition to a new economy.

In Figure 9, we show this diffusion in the model and in the data during 1869—1939. For the

model, we graph the percentage of output produced in plants with blueprints dated 1869

and later. For the data, we graph the percentage of total horsepower in U.S. manufacturing

establishments provided by electric motors. To make this comparison, we are assuming that

in the data, plants that are driven by electric motors were built in and after 1869 and those

driven by steam and water were built before 1869. The model predicts a slow pace of diffusion

similar to that in the data. In the model, technologies dated 1869 and later take 45 years to

diffuse to 50%; in the data, they take about 50 years.

Of course, the choice of initial dates in the data is somewhat arbitrary. To make a

comparison that is not so dependent on initial dates, consider a statistic that is often used

in the diffusion literature: the time it takes for diffusion to go from 5% to 50%. This time is

roughly 20 years (1899—1919) in the data; it is 19 years in the model. Either way we measure

it, therefore, the diffusion in the model is similar to that in the data.

In Figure 10, we show the model’s implications for output per hour during the tran-

sition from 1869 to 1969, together with the actual data for those years. In the model as in
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the data, the growth in output per hour gradually accelerates. Over the period 1869—99, the

trend growth rate in output per hour is 1.6% in both the model and the data. Over the

period 1899—1929, the trend growth rate in output per hour is 2.4% in the model and 2.6%

in the data. In the model, the growth rate in output per hour reaches its new steady state

of 3.3% by 1940.

B. Diffusion in the Old and New Economies

Our model implies a gradual acceleration in the speed of diffusion of new technologies:

slow in the old economy, medium during the transition, and fast in the new economy. Here

we argue that this implication is consistent with the data. Since we have just discussed the

transition period, we only need to examine the old and new economies here.

In our model, in the old economy, a new technology takes about 68 years to diffuse to

50%; during the transition, this diffusion takes about 45 years; and in the new economy, it

takes about 25 years.

In terms of the data, the slow diffusion of a new technology in the old economy is

similar to the slow diffusion of steam power in the United States throughout the 1800s.

The data in Figure 1 indicate that by 1869 steam power had diffused to just over 50%. If

we assume that the diffusion of steam power started sometime between 1800 and 1810–as

Atack, Bateman, and Weiss (1980) suggest–then these data indicate that steam power took

roughly 60—70 years to diffuse to 50%. Moreover, as also shown in Figure 1, steam power

took roughly another 20 years to diffuse from 50% to 80%. In our model, in the old economy,

this same diffusion of a new embodied technology from 50% to 80% takes 19 years. Thus, the

diffusion in our model’s old economy is roughly consistent with U.S. data on the diffusion of
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steam power in the 1800s.

In the new economy, new technologies take about 25 years to diffuse to 50%. We arrive

at this diffusion rate by using (15) and the shares of employment for plants of different ages

observed in the micro data from 1988 that we used in the calibration displayed in Figure 4.

C. Three Necessary Assumptions

Now we describe three assumptions without which our model would not generate

the slow diffusion of new technology and the consequent slow transition to a new economy.

All three of these assumptions are meant to capture the critical elements of the historians’

hypotheses.

Our first necessary assumption is that most of the increase in the pace of technical

change comes in the form of new technologies that are embodied in plants. To see that this

assumption is necessary for the model to generate a slow transition, consider an alternative

transition driven entirely by an increase in the growth rate of the economy-wide technology

z and not by faster growth of the frontier blueprints. When the growth rate of the economy-

wide technology increases, the production possibilities for all plants immediately increase

with no loss of built-up knowledge. Suppose that at the beginning of 1869, agents learn that

the growth rate of the economy-wide technology increases once and for all, so that on the new

balanced growth path, output grows 3.3% per year. Here, the transition to a new economy is

rapid: the trend growth rate of output during 1869—99 is 3.2%. Clearly, when the increase in

the pace of technical change is not embodied in plants, the transition takes little or no time.

Our second necessary assumption is that improvements in the technology for new

plants are ongoing. Clearly, for the model to generate a new economy with a higher growth
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rate of output driven by embodied technical change, this technical change must be ongoing.

If it were to stop, so would the growth due to embodied technical change.

Finally, our model’s third necessary assumption is that after a new plant is built, it

improves its technology during an extended period of learning. Without this assumption,

diffusion of embodied technologies is very rapid. Specifically, if we set the age-dependent

means of the shock to productivity to zero, then embodied technologies diffuse to 50% in just

six years in the old economy and in three years in the new.

D. The Role of Built-Up Knowledge

For our model to generate an economic transition similar to that in the data, we

find that we need one key ingredient in addition to the ingredients contained in the three

assumptions discussed by the historians. The key ingredient is that there must be a large

stock of built-up knowledge in the old economy. Here we discuss how to measure this stock

of built-up knowledge, and we conduct two transition experiments that highlight its role.

A measure of the stock of built-up knowledge relative to the frontier blueprints is

(Āt/τ t)
1−ν. Note that Āt/τ t is the average of the specific productivity across plants relative

to the frontier blueprints available to new plants. The exponent 1 − ν expresses this ratio

in units of the Solow residual of a standard growth model. In our transition experiment,

this ratio is 1.24 in the new economy and 2.21 in the old. Thus, built-up knowledge is 78%

higher in the old economy than in the new. The large stock of built-up knowledge in the

old economy is what slows the transition to the new economy. As the transition begins,

managers are reluctant to close existing plants and lose this knowledge for what, initially, is

only a marginally superior technology.
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We demonstrate the importance of this built-up knowledge for the speed of transition

as follows. Suppose, counterfactually, that existing plants in 1869 have the stock of built-up

knowledge corresponding to an economy with rapid growth of the frontier blueprints. Specif-

ically, consider a transition in which the initial distribution of plant-specific productivities is

the same as that in the new economy.

We can show analytically that if we also set the initial physical capital to output

ratio equal to its steady-state value in the new economy, then there is no transition: the

economy immediately enters a new steady state in which it grows at 3.3% per year, and new

technologies diffuse to 50% in 25 years. If we solve the model with the initial capital-output

ratio set to its steady-state value in the old economy, then the transition is essentially the

same: the trend growth rate of this economy during 1869—99 is 3.2%, and technologies dated

1869 and later diffuse to 50% in only 27 years. Thus, the transition to a new economy occurs

much faster when there is no large stock of built-up knowledge about old technologies.6

We do not have direct evidence on the stock of built-up knowledge in the old U.S.

economy for the period we are studying. We do have some indirect evidence, however. In

the context of our model, new technologies diffuse slowly when there is a large stock of built-

up knowledge about existing technologies in plants. Given our model, the observation that

steam power took roughly from 60 to 70 years to diffuse to 50% leads us to conclude that

manufacturers had a substantial stock of built-up knowledge about existing technologies at

the start of the Second Industrial Revolution. To quantify this initial stock of knowledge,

we use our model to compute the distribution of organization capital that results when the

frontier blueprints grow at a slow pace but the learning process, parameterized by the age-

dependent distributions of shocks to specific productivity, is the same as in the new economy.
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As demonstrated above, this assumption is key to generating a slow transition.

In the model, the stock of built-up knowledge in the old economy depends on the span

of control parameter ν. As we increase that parameter, the stock of built-up knowledge in the

old economy increases and the transition to the new economy slows. For example, consider

our transition experiment with ν = 0.90 as opposed to its baseline value of ν = 0.85. In

this experiment, the trend growth of output per hour in the model is 1.6% for the 1869—99

period and only 1.8% for the 1899—1929 period, and technologies dated 1869 and later take

57 years to diffuse to 50%. This transition is slower because with the higher value of ν, the

old economy has 110% more built-up knowledge than the new economy. When ν = 0.85, the

comparable number is only 78%.

6. Parallels With the Recent Productivity Paradox

David (1990) argues that the transition to a new economy after the Second Industrial

Revolution serves as a useful historical parallel for understanding the recent seeming paradox

of rapid technical change in information technologies accompanied by relatively slow growth in

productivity. We argue that while this comparison may be useful qualitatively, it is less useful

quantitatively. We conclude that while the forces in our model can quantitatively account for

the slow transition after the Second Industrial Revolution, some other forces must be at the

heart of a quantitative explanation of the slow transition after the Information Technology

Revolution.

In our model, the extent of built-up knowledge in existing organizations is smaller the

faster is the pace of technical change. Since the pace of technical change was relatively fast

even before the recent Information Technology Revolution began, our model implies that the
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initial stock of built-up knowledge before this revolution is relatively small. Thus, the model

counterfactually predicts that the speed of transition to a new economy should be relatively

fast, not slow as it is in the data.

To make this concrete, consider another transition experiment. Suppose, as before,

that the pace of technical change increases so that the steady-state growth rate increases 1.7

percentage points. But instead of starting with a relatively slow growth rate of 1.6% in the old

economy, the economy starts with a relatively high growth rate of 3.3%. Suppose that in some

period, agents learn that the growth of frontier blueprints has increased once-and-for-all, so

that the economy grows 5% per year on the new balanced growth path. In this experiment,

the trend growth of output per hour is 4.1% for the first 30 years and 5.0% for the next 30

years. In this transition, new technologies diffuse to 50% in only 14 years. Here the ratio of

built-up knowledge in the old economy with 3.3% growth is only 20% higher than that in the

new economy with 5% growth. Clearly, the transition to a new economy occurs significantly

faster in this experiment than in our original experiment. Since technical change before the

Information Technology Revolution was relatively fast, this experiment suggests that models

like ours will predict a relatively fast transition to a new economy after this revolution, which

is, again, counterfactual.

More generally, we can demonstrate the importance of the steady-state growth rates

in the old economy for the speed of transition to a new economy by a simple experiment. We

vary the initial growth rate in the old economy, but hold fixed the assumption that growth

in the new economy is 1.7 percentage points higher than in the old. We show the results of

this experiment in Figure 11. As the growth rate in the old economy increases, the stock

of built-up knowledge in the old economy falls relative to that in the new economy, and the
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speed of transition and diffusion both increase.

7. Extensions

Here we have used a very simple model that captures the essence of historians’ hy-

potheses about the Second Industrial Revolution. Several features of our work perhaps deserve

further remarks.

In the model, for example, we have abstracted from the possibility that agents could

undertake investment to accelerate learning at the plant level. Writing down a theoretical

model that allows for this possibility would be easy. Currently, though, it is unclear how to

use independent evidence to discipline the parameters governing that part of the model.

In the model, we have also abstracted from sectors other than manufacturing. The-

oretically, extending our model to include services and agriculture as well would be simple.

But we don’t think that such an extension would have a large impact on our results regarding

the diffusion of new technologies embodied in manufacturing plants and the corresponding

growth of average productivity of labor in manufacturing. If we added more sectors and con-

ducted the same transition experiment, we would expect the interest rate effects emanating

from the increased technical change in manufacturing to be diluted somewhat. In our current

analysis, these effects are already quantitatively small.

In the model, we have also abstracted from fixed effects on plant size that are clearly

present in the data. It would easy to include them by allowing the initial draw of plant

productivity to differ across plants either within or across industries. From Proposition 2,

it is clear that such fixed effects would have no impact on our measurements of learning for

cohorts of plants.
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In the model, we have included uncertainty about the evolution of plant-specific pro-

ductivity. We have done so because the distribution of shocks to specific productivities

determines the distribution of organization capital across plants and, hence, plays an im-

portant role in shaping the dynamics of transition. We could have ignored the substantial

heterogeneity in these shocks readily apparent in the data on job creation and job destruction

and instead assumed that these shocks were deterministic. We think that such an incomplete

model would have misleading implications for the transition dynamics.

A final concern might be that the data have secular trends in the fraction of the

labor force devoted to manufacturing. Because returns are diminishing at the plant level,

the main way such trends would have an impact on the model’s average labor productivity

in manufacturing would be by changing the average number of workers per plant. We don’t

think such trends would play a quantitatively important role in accounting for the trends in

labor productivity observed in the data.

8. Relation to the Literature

Our work here is related to several strands of literature.

The process of industry evolution and learning at the plant level in our model is related

to that in the models of Jovanovic (1982), Hopenhayn (1992), Hopenhayn and Rogerson

(1993), and Campbell (1998).

At the general level, the technology diffusion in our model is related to the theoretical

literature on diffusion, including the work of Chari and Hopenhayn (1991) and Jovanovic and

MacDonald (1994). An important feature that our model shares with the Chari-Hopenhayn

model is that investment in old technologies continues even after the invention of a new tech-
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nology. More recent theoretical work on diffusion after major technical change includes that

of Aghion and Howitt (1998), Helpman and Trajtenberg (1998), and Laitner and Stolyarov

(forthcoming). In this literature, the diffusion of a major new technology is constrained by

the need to develop complementary inputs for that technology. In contrast, the point here is

to investigate the hypotheses put forward by David and Wright (1999), that the new tech-

nologies stemming from electric power were embodied in plants and that the diffusion of

these technologies was delayed by the reluctance of agents to abandon the knowledge they

had built up in plants embodying older technologies. With the exception of Laitner and Stol-

yarov (forthcoming), a key difference between our work and this theoretical work on diffusion

is that ours is quantitative. Moreover, most of these models are sufficiently abstract that

attempting to use data to apply quantitative discipline to evaluate their implications is a

daunting task.

More closely related to our work is the applied work of Hornstein and Krusell (1996)

and Greenwood and Yorukoglu (1997). They are primarily interested in the post-1974 pro-

ductivity slowdown. In their work, however, technologies are embodied in machines, not

plants. The diffusion of new technologies embodied in new machines is slowed because agents

must learn to use new machines efficiently. Both of these studies use the estimates of Bahk

and Gort (1993) regarding learning at the plant level to calibrate the parameters in their

models governing the learning process for new machines. As we stressed above, the Bahk and

Gort estimates are conceptually flawed. Moreover, these models’ predictions for the size-age

profile of plants can easily be shown to be grossly at variance with the observations in the

data. Finally, as all of these researchers note, their numerical simulations are intended to be

only illustrative.7
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Some related work has also been done on the skill premium and technology choice

during a transition by Caselli (1999) and Krusell, Ohanian, Ríos-Rull, and Violante (2000).

Finally, literally hundreds of empirical studies examine the diffusion of individual

products and processes that are not embodied in plant design. (For an interesting recent

example studying the diffusion of tractors, see Manuelli and Seshadri 2003.) While these

studies find a wide array of diffusion times, they are not germane to our work. Moreover,

since we focus on technologies embodied in plant design, our model is not intended to be

applicable to these other products and processes.

9. Conclusion

Here we have asked, can a model which incorporates quantitative measures of the

learning process that match the U.S. micro data on the life cycle of plants account for the slow

diffusion and slow transition in U.S. manufacturing after the Second Industrial Revolution?

We have found that it can. This finding requires that much of the increase in the pace

of technical change after the revolution come from new embodied technologies, that this

increase be ongoing, and that there be substantial learning about these technologies at the

plant level. In addition, we have discovered that for the model to generate slow diffusion and

slow transition, manufacturers must start with a large stock of built-up knowledge about the

existing technologies embodied in their plants. On the basis of this result, we have argued

that the U.S. experience after the Second Industrial Revolution may not be quantitatively

useful as a parallel with the U.S. experience after the Information Technology Revolution.

Of course, before any definitive analysis of the impact of the Information Technology

Revolution can be fleshed out in a quantitative model, at least three issues must be addressed:
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Where are the new technologies embodied? How long is the period of learning after they are

adopted? And howmuch built-up knowledge do existing organizations have with their current

technologies? With regard to information technologies, none of these questions are easy to

answer.

In our model of the Second Industrial Revolution, we have followed the historical lit-

erature in assuming that the designs of new manufacturing plants embody new technologies.

This assumption does not seem to be immediately applicable to the Information Technol-

ogy Revolution, since where the information technologies are embodied is not clear. Some

evidence suggests, in fact, that organizations can use these technologies efficiently only af-

ter the organizations have been substantially restructured, so the new technologies might be

somehow embodied in the structure of the organization. (See Brynjolfsson and Hitt 2000.)

Perhaps our model could be adapted to analyze the Information Technology Revolution, but

the unit of analysis would probably have to shift to some level of organization other than

plants.

In our model, we used data on the birth, growth, and death of plants to draw inferences

about the speed of learning. It is not clear what corresponding data would help quantify the

speed of learning during the Information Technology Revolution. Clearly, such data are

critical to evaluating the impact of these technologies. One might argue that the relevant

unit of analysis for the Information Technology Revolution should be firms rather than plants.

In that regard, note that the data on the market shares of cohorts of firms are quite different

from the corresponding data for plants. In particular, the market share for a cohort of firms

declines rather than rises over time. (See the survey of Caves 1998.) In the context of our

model, these data imply that the diffusion of new technologies embodied in firms is fast,
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rather than slow. Hence, this avenue does not seem promising for accounting for the slow

transition after the Information Technology Revolution.
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Notes

1Note that we do not assume that all new technologies are embodied in new plants. In

fact, our model is consistent with the idea that most of the ongoing technical change in the

economy is driven by either disembodied technical change or technical change embodied in

other factors, such as capital goods or labor.

2Since our model has a fixed number of managers and each manager can either start

a new plant or operate an existing plant, our assumptions imply that on a balanced growth

path, the number of plants is fixed. An alternative assumption, pursued by Hopenhayn and

Rogerson (1993), is that instead what is fixed is the cost in terms of consumption goods of

starting a new plant. In that alternative model, the number of plants grows over time.

We have chosen our specification because it seems to be a good approximation to the

data. Sands (1961) reports that over the period 1904—47, the number of manufacturing plants

in the United States grew only 0.5% per year while output per manufacturing establishment

grew nearly 3.0% per year. Clearly, most of the growth of output in this period came from

more output from each plant and only a small part from an increase in the number of plants.

3Here and throughout this study, our microeconomic data are taken from the U.S. Cen-

sus Bureau’s Longitudinal Research Database (LRD) on manufacturing plants, a data set

available at http://www.census.gov. This data set is described in Davis, Haltiwanger, and

Schuh (1996). We use data on employment, job creation, and job destruction from the 1988

panel of the LRDwhich we obtained from John Haltiwanger’sWeb site, http://www.bsos.umd.

edu/econ/haltiwanger.

4Davis, Haltiwanger, and Schuh (1996) define the following statistics. Job creation in
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a plant i in year t is lit − lit−1 if lit ≥ lit−1 and zero otherwise, where lit is the labor force

in plant i in year t. Job destruction in a plant i in year t is lit−1 − lit if lit ≤ lit−1 and zero

otherwise.

5Notice that to make our model simple to exposit we have identified each plant as

having one fixed factor of some given scale that is the same across plants. We have called

this fixed factor a manager. We have assumed that this fixed factor gets a share 1 − v of

value-added. Our current procedure also covers a more sophisticated case in which the level

of the fixed factor varies across plants but the factor still receives a share of 1− v.

In particular, one way to deal with the observation that plants in some industries are

systematically larger than plants in other industries is to assume that the scale of the fixed

factor in some industries is larger than the scale in others. For example, the scale of the fixed

factor may be ten units in an automobile plant and just one unit in a shoe plant. In this

example, ten shoe plants would function like one automobile plant.

Notice that our current calibration procedure, as it stands, is consistent with allowing

for such heterogenous level effects in the fixed factor. The reason is that in calibrating the

learning process, we use only shares of employments by cohorts of plants and job creation

and destruction rates. In our example, when faced with the same shocks, the ten shoe plants

would produce identical observations on these variables as the one automobile plant. Thus,

the key identifying assumptions in our procedure are two: the sum of the fixed factors in

any given cohort of plants is constant over time, but can differ widely across plants within a

cohort or across cohorts in different time periods; and the share of the fixed factor is constant.

6This transition experiment can be interpreted as the transition that occurs in an

alternative model in which both learning and the growth of the frontier blueprints are slower
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in the old economy than in the transition to the new economy. Specifically, assume that in

the old economy, the means of the log of plant-specific productivity shocks are lower than

those in the new economy by log(1 + gnewτ )− log(1 + goldτ ). In this alternative model, as the

growth rate of the frontier blueprints increases, the rate of learning increases, so that the new

economy has the same size-age distribution as the old economy.

7For example, Greenwood and Yorukoglu (1997, p. 67) say explicitly that their “model

was not tuned, by choice of parameter values, to be in harmony with any particular features

of the U.S. data.”

42



Appendix A: Links Between Historical Analyses and the Model

Our model has three key assumptions: (1) new plants embody new technologies; (2)

improvements in the technology for new plants are ongoing; and (3) new plants require an

extended period of learning in order to use their technology efficiently. Motivating these

assumptions are three features of the data discussed by historians in relation to the develop-

ment and adoption of electricity that began around 1860: (1) the change to electric power

from steam and water power led to major changes in factory design and machine organization

that went hand in hand with electrification; (2) the process of improving efficiency through

changes in factory design continued for decades; and (3) for each new factory design, the

process of learning how best to use the new design took an extended period of time.

New Plants Embody New Technologies

Our assumption that new plants embody new technologies in their plant design is

motived by the analysis of Devine (1983) and David (1990, 1991), who argue that the adoption

of the modern technology of electricity required a complete redesign of the manufacturing

plant. In steam- and water-driven plants, power was distributed mechanically throughout

the factory by a series of shafts and belts called a direct-drive system. In modern electric

plants, power is distributed as electricity through wires to individual motors in what is called

a unit-drive system.

Devine (1983, pp. 350, 352) describes the direct-drive system used in steam- and

water-driven plants this way:

Until late in the nineteenth century, production machines were connected by a

direct mechanical link to the power sources that drove them. In most factories,
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a single centrally located prime mover, such as a water wheel or steam engine,

turned iron or steel “line shafts” via pulleys and leather belts. These line shafts–

usually 3 inches in diameter–were suspended from the ceiling and extended the

entire length of each floor of a factory, sometimes even continuing outside to

deliver power to another building. Power was distributed between floors of large

plants by belts running through holes in the ceiling . . . . The line shafts turned,

via pulleys and belts, “countershafts”–shorter ceiling-mounted shafts parallel to

the line shafts. Production machinery was belted to the countershafts and was

arranged, of necessity, in rows parallel to the line shafts . . . . The entire network

of line shafts and countershafts rotated continuously–from the time the steam

engine was started up in the morning until it was shut down at night–no matter

how many machines were actually being used. If a line shaft or the steam engine

broke down, production ceased in a whole room of machines or even in the entire

factory until repairs were made.

Panel A of Figure 12 (from Devine 1983) illustrates this direct-drive system of power.

The direct-drive system of power gradually evolved into the unit-drive system used in

modern electricity-driven plants. In the unit-drive system, illustrated in panel D of Figure

12, each machine is driven by its own electric motor, and power for that motor is delivered

through power lines from some potentially far-off electric utility plant. Panels B and C of

Figure 12 show two short-lived intermediate stages in this evolution, referred to as electric

line shaft drive and electric group drive. Panel A of Figure 13 (also from Devine 1983) shows

the evolution of these methods of driving machinery with electricity in manufacturing. Panel
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B shows the key developments of electric motors and power generation.

Redesigning and Learning Take Time

Our other two assumptions–that technical change in plant design is ongoing and that

the process of learning how best to use each new factory design takes an extended period of

time–are motivated by the work of many historians.

As Devine (1983) describes, with the unit-drive system, plants could be designed and

machinery in the plant could be arranged so as to handle materials according to the nat-

ural sequence of manufacturing operation, rather than according to physical placement of

shafts, as required by the direct-drive system. Moreover, once the shafts in the direct-drive

system became unnecessary, plants could also be designed with improved ventilation, illumi-

nation, and cleanliness and to accommodate overhead electric cranes, which were thought to

revolutionize materials-handling.

Devine (1990) and Sonenblum (1990) document that the adoption of the unit-drive

system was only the first of a series of ongoing advances in the production process and modes

of organization of factories that depended on the use of electricity. Moreover, these historians

argue that each advance in factory design required an extended period of learning how to

best use the new design.

Sonenblum (1990) documents three stages of factory design evolution. In the first

stage (which he says occurred in 1899—1920), new factory design evolved from the traditional

direct drive through the intermediate stages of the electric line shaft drive and the electric

group drive to the electric unit drive. In the second stage (1920—48), the attention in new

factory design shifted to modifying the factory layout in order to accelerate the throughput
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of materials. Machines were arranged so that materials moved smoothly from one operation

to the next, and assembly lines became more common. In the third stage (1948—85), new

factories were designed to optimally use new servomechanisms that automatically controlled

machine actions and numerically controlled machines. While these factory systems were

developed in the 1940s and 1950s, they began to spread into many manufacturing plants

only in the 1960s. These systems allowed factories to rely less on large, inflexible assembly

lines and to produce nonstandard products in small batches. Moos (1957) and Slesinger

(1958) also discuss the changes in plant design driven by the development of automatically

controlled machines and the learning required to take advantage of such plants. As Devine

(1990) discusses, in the 1980s, the evolution of factory design evolved to accommodate new

methods of computer materials-handling and computer-integrated manufacturing in which

a computer controls whole groups of machines. Figure 14 (from Devine 1990) gives a brief

chronology of this ongoing change in the organization of production that required new factory

designs.

Chandler (1992, p. 84) discusses the type of built-up organizational capabilities that

resulted from firms learning to efficiently use the technologies developed in the Second Indus-

trial Revolution. He argues that the learned capabilities that resulted from solving problems

of scaling up the processes of production manifest themselves in firms’ production and distri-

bution facilities. These learned capabilities were developed through trial and error, feedback,

and evaluation and were organization-specific.
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Appendix B: Choosing Micro Parameters

In our calibration, we assume that the economy is on a balanced growth path. Here

we show that along a balanced growth path, the Bellman equations characterizing the entry

and exit decisions of plants, (4) and (5), can be recast with plant size n replacing specific

productivity as a state variable. In the recast Bellman equation, the only preference or tech-

nology parameters that enter are the discount factor β and the age-dependent distributions

of shocks to size. This result allows us to calibrate the shocks to specific productivity A

directly in terms of shocks to plant size n and, moreover, to do so in a way independent of

the rest of the parameters in the model. After presenting this result, we discuss our choice

of these parameters in greater detail.

Recasting the Bellman Equations

Consider, first, the balanced growth path. To ensure that our model has such a path,

we assume that F (k, l) has the Cobb-Douglas form kθl1−θ. We define a balanced growth path

in this economy as an equilibrium in which the following conditions hold: The quality of the

frontier blueprint τ t and the productivity Āt grow at a constant rate 1+gτ ; the economy-wide

level of technology zt grows at a constant rate 1+gz; aggregate variables yt, ct, kt, wt, and wmt

grow at a rate 1+g, where 1+g = [(1+gz)(1+gτ)
1−ν]1/(1−νθ); and variables φt, V

0
t , and rt are

constant. Moreover, the distribution of plants by age and size is constant over time, and the

value of a plant of a given age and size grows at the rate 1+ g, so that µt+1(A
0, s) = µt(A, s)

and Vt+1(A0, s) = (1+ g)Vt(A, s) for all t, A, s with A0 = A(1+ gτ). Similar relations hold for

λt+1, V
c
t+1, and dt+1.

Along the balanced growth path, we can recast our state variables as (n, s) instead of
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(A, s) as follows. Let {ρs} be the cumulative distribution functions of η = �/(1 + gτ)(1 + gz)

induced by {πs} . We refer to {ρs} as the steady-state distributions of shocks to plant size.

Consider the Bellman equation

W (n, s) = max [0,W c(n, s)](20)

W c(n, s) = n− ωm + β
Z
η
W (nη, s+ 1)ρs+1(dη),

where ωm = βW (1, 0).

Proposition 3. The distribution of plants by size and age on the balanced growth path is

determined by the solution to (20).

Before we prove this proposition, note that the only parameter that enters (20) besides

parameters governing the shocks to size is the discount factor β. Therefore, given β, we can

choose the parameters of the distributions of the shocks to plant size to match data on the size

and age distribution of plants independently of our choices for the other macro parameters.

Proof. We use the solution to (20) to construct a solution to (4) as follows. First, we

use the function W c(n, s) to define an operating rule for plants contingent on state n and

age s: plants with W c(n, s) ≥ 0 operate, and those with W c(n, s) < 0 do not. We use this

operating rule, together with the distributions of shocks to size {ρs} and the normalization

that new plants start with n = 1 and s = 0 to compute the implied distribution of n across

plants of different ages s, which we denote by η(n, s). To convert the state variable n to

correspond to the size of the plant and the distribution η(n, s) to correspond to the size-age

distribution of plants, we normalize n so that the distribution of size across plants integrates

to one.
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To that end, let n̄ =
P

s

R
n η(dn, s). Now normalize periods on the balanced growth

path so that τ0 = 1, and choose the units of economy-wide productivity so that z0 = 1. Define

Ā0 = n̄, and solve for the corresponding values of y0 and k0 on the balanced growth path with

growth rate g. Define the function V0(A, s) = W (n, s)y0(1− ν), where n = A/Ā0. Then use

the balanced growth relation, Vt+1(A0, s) = (1+ g)Vt(A, s) for all t, A, s with A0 = A(1+ gτ),

to define the function Vt(A, s). Define the functions V c
0 (A, s) and dt(A) and the sequence

wmt similarly. Also, construct the sequence Āt using Āt+1 = (1+ gτ)Āt. That these functions

Vt(A, s), V
c
t (A, s), dt(A), and wages wmt solve the original Bellman equation (4) along the

steady-state path follows from the fact that the functionsW andW c defined above satisfy this

second Bellman equation (20). That Ā0 = n̄ is the initial aggregate of specific productivities

across plants follows from the normalization τ 0 = 1, since τ0/Ā0 = 1/n̄ is the size of new

plants. q.e.d.

Quantifying Shocks

We use microeconomic data to quantify the shocks to plant size η. Note that since

only the product (1 + gτ)(1 + gz) enters the definition of shocks to size η, the data on the

size-age distribution of plants do not pin down the relative contribution to growth in the

Solow residual of growth in the two types of technology: frontier and economy-wide. More

generally, the balanced growth properties of this model do not depend on the way a given

growth in the Solow residual g is split between gτ and gz. However, the transition paths turn

out to depend crucially on whether the transition is driven by changes in gτ or by changes in

gz.

We use observations from micro data on manufacturing plants in the United States
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to choose the parameters affecting the shocks to size using a type of simulated method of

moments. We parameterize the distributions of these shocks as follows. We assume that

shocks to size have a lognormal distribution, so that log(ηs) ∼ N(ms, σ
2
s). We choose the

means and standard deviations of these distributions to be smooth functions of the age s of

a plant. In particular, we set ms = γ1 + γ2(
S−s
S
)2 for s ≤ S and ms = γ1 otherwise and

σs = γ3 + γ4(
S−s
S
)2 for s ≤ S and σs = γ3 otherwise. With this parameterization, the shocks

to size for plants of age S or older are drawn from a single distribution. Thus, shocks to size

are parameterized by {γi}4i=1 and S. Note that the corresponding shocks to plant-specific

productivity are lognormal with means m̂s = ms + log(1 + gτ) and variances σ̂
2
s = σ2s.

We choose the parameters governing the shocks to size so that the model matches data

on the fraction of the labor force employed in plants of different age groups, as well as data

on job creation and job destruction in plants of different age groups, from the 1988 panel of

the U.S. Census Bureau’s LRD. We use the data from this panel because it has the most

extensive breakdown of plants by age.

To produce the shocks’ parameter values, we set the model’s parameter S = 150 and

choose the γi to minimize the sum of the squared errors between the model’s and the data’s

statistics.

The parameters that generate these shocks are S = 150, γ1 = −0.1843, γ2 = 0.2481,

γ3 = 0.1888, and γ4 = 0.0005. Recall that in Figure 8, we have plotted the means and

standard deviations of our estimated shocks to the log of the size of plants, ms and σs, that

are implied by these parameters for s = 0, . . . , 25.
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Figure 3    The Life Cycle of Plants in the Model

Productivity of Two Plants vs. That of Frontier Blueprint Over Time
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Source: U.S. Census Bureau’s Longitudinal Research Database
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Figures 4–5    Evidence That Plants Grow Relatively as They Age

Figure 4    Average Employment Share of One-Year Plant Cohorts

Percentage of Total Workers Employed by U.S. Manufacturing Plants 
of Various Ages in 1988



                          Source:  Jensen, McGuckin, and Stiroh (2001)
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Figure 5    Average Hours Worked in Five Plant Cohorts
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Figure 6    The Constant Relationship Between a Plant’s Productivity
and Its Age and Size

Among U.S. Manufacturing Plants, 1972–86

Source:  Bartelsman and Dhrymes (1998)
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B.  Productivity By Size (Number of Workers Employed)
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Figure 7    The Model’s Reproduction of U.S. Employment Data

Each Statistic as a Percentage of Total U.S. 1988 Employment
for Manufacturing Plants of Various Ages

Source of U.S. data: U.S. Census Bureau’s Longitudinal Research Database
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Source of U.S. data:  Devine (1983, p. 351, Table 3)
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Figures 9–10    The Model's Reproduction of the Gradual Transition to a New U.S. Economy

Figure 9    A Slow Diffusion of New Technology . . . 

Model's Predicted % of Output Produced in Plants with New Blueprints
 vs. Actual % of Horsepower Provided by Electric Motors in U.S. Manufacturing Plants, 1869–1939



Source of U.S. data: U.S. Department of Commerce (1973)
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Figure 12    Evolution of Power Distribution
in Manufacturing Establishments

Source:  Devine (1983, p. 353, Figure 2)



Figure 13    Chronology of Electrification of Mechanical Power in Industry

A.  Methods of Driving Machinery
B.  Key Technical and Entrepreneurial Developments

1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930

A.

B.

Direct drive
Line shaft drive

Group drive
Unit drive

1870  D.C. electric generator (hand-driven)
1873  Motor driven by a generator

1878  Electricity generated using steam engine
1879  Practical incandescent light

1882  Electricity marketed as a commodity
1883  Motors used in manufacturing

1884  Steam turbine developed
1886  Westinghouse introduces A.C. for lighting

1888  Tesla develops A.C. motor
1891  A.C. power transmission for industrial use

1892  Westinghouse markets A.C. polyphase induction motor;
General Electric Company formed by merger

1893  Samuel Insull becomes president of Chicago Edison Company
1895  A.C. generation at Niagara Falls

1900  Central station steam turbine and A.C. generator
1907  State-regulated territorial monopolies

1917  Primary motors predominate;
capacity and generation of
utilities exceeds that of
industrial establishments

Source:  Devine (1983, p. 354, Figure 3)



Figure 14    Milestones in the Evolution of Production Organization

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990

1900  Machines arranged along line shafts

1910  Machines grouped by operation or product

1913  Flow-line assembly (Ford Motor Company)

1920  Assembly line common

1925  Large metal-working transfer machine

1930  Transfer machine for engine manufacture

1941  80-station transfer machine. Inflexible

1948  Word “automation” first used. Transfer machine common

1957 Greater mechanical integration (link lines and centralized control
stations). Limited flexibility

1969 Highly developed automatic transfer machines.
Improved flexibility

1980s Computerized materials-handling devices;
flexible manufacturing systems

1985 Modular assembly (automatic guided
vehicles)

1988  Computer-integrated manufacturing

Source:  Devine (1990)




