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1. Introducfion

Most theories of the determinants of industrial concentration assign an important role to
scale economies, at either the plant or the firm level. However, U.S. manufacturing appears to be
considerably more concentrated than would be warranted by scale economies alone. For
example, in nine of the twelve industries examined by Scherer et al. (1975), the market share of
the top three firms in each industry ranges from two to ten times larger than the market share
necessary to exploit scale economies (with an average of 4.4 over the whole sample). One
possible explanation for this observed divergence is that strategic actions undertaken by
incumbent firms can magnify the advantages conferred by scale economies. The literature on
capacity as a strategic entry deterrent (surveyed below) advances such a theory: by building
capacity in excess of what would be optimal in the absence of an entry threat, early incumbents
can deter further entry, or at least reduce the scale of such entry.

This paper uses the Bertrand-Edgeworth model of price competition to reexamine the role
of capacity precommitment as an entry deterring device. More precisely, we assume that there
are two firms, an incumbent and a potential entrant (henceforth called the entrant), that compete
in a market for a homogeneous good. The firms play a three-stage noncooperative game. First,
the incumbent chooses its capacity. Having observed the incumbent’s capacity level, the entrant
then selects capacity. In the third stage, the firms simuitaneously set prices.

Allen (1993) first analyzed a game of this type. Our paper differs from Allen's (1993)
analysis in two important ways.1 First, we allow firms to have different unit costs of production
up to capacity. This enables us to examine the role of differential efficiency in determining the
nature of precommitment; with asymmetric efficiencies a firm may want to precommit to be
large (as in Dixit (1980)) or small (as in Gelman and Salop (1983)). Second, we characterize the

equilibrium for arbitrary (but identical) costs of capacity and fixed set-up costs. A central theme

LAllen (1993) shows that when firms are equally efficient, there exists a range of fixed costs over
which the incumbent can profitably deter entry. However, the paper characterizes neither the
optimal entry deterring strategy, nor the region over which deterrence is feasible or optimal. Itis
also mute on the nature of equilibrium when deterrence is either not feasible or not optimal.



of our paper is that the distinction between fixed costs of entry, the cost of capacity, and the cost
of production up to capacity is crucial to the understanding of a wide range of economic
phenomena.

The contemporary analysis of entry deterrence can be seen as an outgrowth of the limit
pricing model of Bain (1956), Sylos-Labini (1969), and Modigliani (1958). According to Bain
(1956, p. 98), potential entrants act as if they expected that upon entry established firms would
maintain output at the pre-entry level.2 The decision whether to enter the industry is therefore
based upon a comparison of the residual demand curve (industry output minus the pre-entry
output of incumbent firms) and potential entrants’ cost conditions. If there are economies of
scale in production, or if entrants are cost disadvantaged, established firms can raise their pre-
entry output level up to the point where entry is effectively deterred. By its nature this
framework compresses firms' long-run entry and size decisions and their short-run production
and pricing decisions into the same period. Later models of entry deterrence (e.g., Dixit's
(1979)) have formally separated these two decision periods and have argued that the threat to
maintain output at the pre-entry level is not subgame perfect.

Our paper differs from most previous analyses of entry deterrence in its assumptions
regarding competition in the post-entry game. Spence (1977) assumes that the post-entry game
is perfectly competitive, i.e., that price clears all capacity from the market. Dixit (1980), Spulber
(1981), Ware (1985), and Bulow, Geanakoplos, and Klemperer (1985) examine the case where
the post-entry game is Cournot. Spulber (1981), Saloner (1985), and Basu and Singh (1990)
examine entry when the post-entry game is Stackelberg quantity-setting.

Post-entry Bertrand competition has remained relatively neglected. Dixit (1980) and
Bulow, Geanakoplos, and Klemperer (1985) examine Bertrand competition in the final stage in a
differentiated products model. Bulow, Geanakoplos, and Klemperer (1985, p. 181) note that

with homogeneous goods, final stage price-setting leads to marginal cost pricing and, therefore,

2This assumption has become known as the Sylos postulate.



if the entrant's constant marginal costs are at least as great as the incumbent's and if there is a
fixed cost of entry, "we would never expect to observe entry followed by price competition.” 3
Our paper demonstrates that this conclusion is an artifact of a modelling strategy which allows
capacity to be instantaneously adjusted upward in the post-entry game. Borrowing terminology
from the real business cycles literature (see Kydland and Prescott (1982)), we call this
assumption no time to build . This assumption is maintained in both the Dixit and the Bulow,
Geanakoplos, and Klemperer models (as in most of the other models a.bove:).4 ‘While its
implications are innocuous for quantity-setting games, this is not true for post-entry price-setting,
as noted by Edgeworth (1925). Our paper departs from these previous attempts to deal with
post-entry price-setting by assuming that capacity requires fime fo build . Specifically, we
assume that the incumbent and entrant may sequentially precommit to capacity levels. However,
once these capacities are in place there is no upward adjustment in the post-entry stage.5 Prices
are set subject to the limitations on sales imposed by the capacity constraints.

The Bertrand-Edgeworth approach to modelling post-entry competition is appealing for
several reasons. First, it is immune to the Bertrand critique; firms set prices. This avoids the
Cournot model's reliance on the hypothetical auctioneer who sets prices to clear quantities in the
market. Moreover, for most markets a strong intuitive argument can be made that prices are
more easily adjusted than quantities and hence can be set contingent on the quantities available.
This leads naturally to a model where price formation is the final stage of a multistage game.

A common defense of the Cournot model is based on the Kreps and Scheinkman (1983)

argument that simultaneous quantity choice followed by simultaneous price-setting can yield a

3This statement is supported by Stiglitz (1987) and is also attributed to Gilbert in the discussion
following Gilbert (1986).

More specifically, although neither paper is explicit about the timing, it is assumed that
capacities can be adjusted upward after prices have been set.

SWare (1985) also assumes that the incumbent and entrant sequentially precommit to capacity
levels. However, he assumes post-entry Cournot competition and instantaneous adjustment of
capacity at that time.
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Cournot outcome.® However, there is a growing consensus among theoreticians that the choice
of a quantity in the Cournot model should be interpreted as a level of capital investment or scale
of operation.7 It therefore seems inappropriate to appeal to the Kreps-Scheinkman result to
justify post-entry Cournot competition in a model in which capital may be precommitted. A
more natural approach is to replace the Kreps and Scheinkman (1983) assumption of
simultaneous capacity choice by sequential precommitment in the choice of capacity.

The Bertrand-Edgeworth approach to modelling post-entry competition also has another,
hitherto largely unnoticed, advantage over the no time to build approach: when fixed entry costs
are either nonexistent or not too large, the latter approach is incapable of generating a first-mover
advantage from capacity precommitment . Indeed, consider Dixit's (1980) analysis, in which an
incumbent (firm 1) and a potential entrant (firm 2) sell imperfect substitutes. After the
incumbent chooses a capacity level kj, firm 2 decides whether or not to enter. In the event entry
occurs, both firms simultaneously announce a price and expand capacity to satisfy any demand

that can be proﬁtébly sold at these price:s.8

The situation is depicted in Figure 1. The two curves
MM’ and NN’ represent the incumbent's best response functions, the former when capacity costs

matter and the latter when capacity costs are sunk. The curve EE’ is the potential entrant's best-

6See, however, the work of Davidson and Deneckere (1986), who show that this result is
sensitive to the choice of rationing rule, and Deneckere and Kovenock (1989b), who show that,
even with the rationing rule used by Kreps and Scheinkman (1983), the equivalence need not
hold with different unit costs of production up to capacity. Moreover, as Allen and Hellwig
(1986) show, simultaneous price and quantity choices do not, in general, lead to Cournot
outcomes under proportional rationing.

7For instance, Shapiro (1989), referring to Kreps and Scheinkman, states that "they take the
view, to which I adhere, that capital is a relatively sluggish variable, whereas prices can be
adjusted rapidly. This leads to a model of capacity competition followed by pricing
competition." Tirole (1988, p. 218) puts it more forcefully when he states that "the two-stage
game is meant to convey the idea that price competition is the final stage of competition and the
idea that scale decisions must be made before firms arrive on the market.... what we mean by
quantity competition is really a choice of scale that determines the firm's cost functions (sic) and
thus determines the conditions of price competition."” (Original italics) -

8More precisely, the post-entry game is a differentiated products price-setting game where firm 2
has a constant marginal cost of (co+r) for all levels of output, while firm 1 has a constant
marginal cost equal to ¢ for output levels below ki, and (c1+r) for output levels above k3, where
r is the unit cost of capacity and ¢ and c are the respective unit variable production costs.



5

response fuﬁction (where capacity costs still matter). In a simultaneous move price-setting game,
the equilibrium would thus occur at the point T in the diagram. However, because in the post-
entry stage the incumbent's capacity costs at output levels x; <k, are effectively sunk, the
incurmbent's reaction function in the second stage of the two-stage game is NN’ for output levels
x; <k, and MM’ for output levels X; >k;. The curve x; =k, represents all (py, py)
combinations at which the incumbent's demand is equal to k;, i.e., where the incumbent is
capacity constrained unless this firm expands beyond k;. The overall best-response function of
the incumbent in the post-entry game is therefore represented by the heavy line in Figure 1. With
the choice of k; as depicted, the second-stage equilibrium would occur at T'. By varying the pre-
entry choice of k;, the incumbent can secure any point along the segment TV of the potential
entrant's best-response function. This leads Dixit (1980, p. 105) to mistakenly conclude that "a
limited leadership possibility arise(s) by virtue of the established firm's advantage in being the
first to make a commitment to capacity.” Indeed, in the analogous quantity-setting game which
he analyzes earlier, the leadership possibility is limited because the line segment TV may not
include the Stackelberg point S. In that case V is the incumbent's most preferred outcome. For
the price-setting game, the Stackelberg point can be found by superimposing the incumbent's
isoprofit contours onto Figure 1; see Figure 2. Since S lies to the right of T, the most preferred
outcome on the segment TV now occurs at the duopoly point T. In contrast to Dixit, we
conclude that in differentiated product price-setting games with no time to build, the ability to
sink investment costs confers no strategic advantage on the incumbent . Intuitively, the
incumbent would like to precommit to a capacity below the duopoly level in order to soften the
post-entry competition.10 With no time to build, a commitment to restrict capacity to the
Stackelberg level is not credible, and the best the incumbent can do is enjoy duopoly profits. It

should also be emphasized that while the above result was derived under the assumption of zero

At the point T, the first-order effect on the incumbent's profits of increasing p; is zero, but the
first-order effect of an increase in p, is positive. Consequently S must be to the right of T.

10This is the "puppy dog" effect emphasized by Fudenberg and Tirole (1984).



fixed entry costs, the reasoning remains valid as long as the profits of firm 2 at the point V—net
of fixed entry costs—are positive.

The Bertrand-Edgeworth approach to strategic entry deterrence is also appealing because
of the array of qualitatively distinct outcomes that are generated as subgame perfect equilibria in
the resulting game. Entry may be blockaded, deterred, or accommodated, depending on the
configuration of costs. In cases where entry is successfully deterred, excessive capacity built to
deter entry may be utilized completely or may be left partially idle.1! Thatis, the equilibrium
price of the incumbent may or may not clear its entire production capacity from the market,
depending on the cost parameters. _

The existence of a subgame perfect equilibrium involving idle capacity to deter entry is of
independent interest. While a number of models in the existing literature obtain idle capacity to
deter entry, these models all rely on nonstandard assumptions concerning behavior or timing.
Spence (1977) obtains idle capacity, but assumes that firms produce at full capacity in the post-
entry game. Such behavior can only be justified if the post-entry game is perfectly competitive,
an assumption which seems at odds with the small number of competitors present in the market.
Indeed, Dixit (1980) has argued that Spence's result arises because entrants believe noncredible
threats regarding the incumbent's post-entry output. When an opponent enters the market, its
increase in quantity or reduction in price produces an inward shift in the incumbent's residual
demand curve. The incumbent then responds rationally by reducing its output. Consequently,
any capacity that was idle before entry will remain idle after entry and so will not deter entry.
Since capacity costs are positive, no rational incumbent will ever choose to install idle capacity.
Bulow, Geanakoplos, and Klemperer (1985) regain idle capacity in an example in which only
credible threats are believed. However, they require that the monopolist's residual demand
function becomes sufficiently more elastic upon entry that its marginal revenue increases. This

will make it rational for the incumbent to raise output in the post-entry game. However, upward

11By excessive capacity, we mean capacity that is built solely for strategic reasons, i.e., capacity
in excess of the level a monopolist would choose were its market unchallenged.



sloping portions in the quantity best-response function cannot occur for concave demand
functions. Lastly, Spulber (1981) has demonstrated that idle capacity may result if the
incumbent maintains its first-mover advantage beyond the capacity-setting period into the (post-
entry) output-setting period. 12 Unlike any of the above papers, the present paper provides an
explanation of why holding idle capacity to deter entry can be rational, while maintaining a post-
entry simultaneous move structure, subgame perfection, and standard assumptions about
demand. In our model, idle capacity may prove useful because, in the mixed strategy
equilibrium which results following entry, the incumbent only reduces output when it is undercut
by the entrant. Whenever the incumbent is lower priced, it raises output, thereby partially
utilizing idle capacity and reducing the entrant's expected profits.

When entry is accommodated in our model, the incumbent may behave according to the
Sylos postulate, so that price is driven down to the level that clears all capacity, or the incumbent
may provide a stochastic price umbrella under which the entrant can price. In the latter instance,
the incumbent stochastically reduces output below capacity.13 Following Faith (1990) we
provide conditions on the cost parameters that determine which strategy the incumbent follows.
When prices clear production capacities, the classical Stackelberg equilibrium sometimes arises.
In other cases, the outcome duplicates the equilibria in Dixit's (1980) quantity-setting model.
When entry is accommodated by a (stochastic) reduction in output, the result may best be
described as a simultaneous price-setting version of Gelman and Salop's (1983) "judo"

equilibrium. The incumbent sets a large capacity, and the entrant remains small to discourage

12This method of generating idle capacity to deter entry was rediscovered by Basu and Singh
(1990).

13When in equilibrium entry is successfully deterred, this type of behavior is also exhibited in
off-the-equilibrium-path subgames following entry. When entry is deterred with excessive but
not idle capacity, off-the-equilibrium-path post-entry behavior may involve either Sylos-like
behavior or stochastic output reduction (below capacity). When idle capacity is held in deterring
entry, off-the-equilibrium-path entry will involve only stochastic output reduction below
capacity.



intense price compet:ition.14 By relating the existence of the Stackelberg and judo outcomes to
the values of the cost parameters, our model provides a unifying framework in which these
outcomes appear as special cases.

As is evident from the above discussion, the Bertrand-Edgeworth model is also of interest
because of the wealth of testable implications that it generates. Not surprisingly, entry is
accommodated when fixed set-up costs and differences in variable production cost (as measured
by the unit costs of production up to capacity) are small. For high capacity costs, entry
accommodation will result in Stackelberg behavior, while for low capacity costs, judo-like
behavior with idle capacity will arise. Entry deterrence with excessive capacity tends to occur
when the unit cost of capacity is not too large and there are moderate fixed set-up costs.1> In
both situations in which entry is deterred and accommodated, idle capacity is more likely with a
more efficient incumbent than with a less efficient one (as measured by unit cost of production
up to capacity) and is more likely the lower the cost of capacity. Excessive (but fully utilized)
capacity is more likely to be chosen as a preemptive strategy the higher the cost of capacity and
the higher fixed set-up costs.

This list of testable implications is intended to be suggestive rather than exhaustive. The
usefulness of the Bertrand-Edgeworth approach can be measured by the difficulty which other
economically reasonable models of entry have in generating comparable predictions. Our model
provides a cohesive and coherent framework which generates a range of equilibrium behaviors
that depend on parameters in an intuitive way. Further extensions of the present model along the
same lines as Cournot-based models of entry can undoubtedly lead to an even richer theory of

market interaction. 16

14-This may occur even if the entrant is more efficient (see also Faith (1990)).

15When capacity costs are large, entry is more likely to be accommodated (if fixed set-up costs
are small) or blockaded (if fixed set-up costs are large). The range of fixed set-up costs for
which entry is deterred becomes small.

160ne such extension is Hunsaker's (1993) treatment of the theory of exit. Another extension
which appears accessible at this point is a theory of entry deterrence with multiple incumbents.



In Section 2 we present the basic model. Post-entry price-setting subgames are examined
in Section 3. Section 4 uses the analysis of Section 3 to construct the potential entrant's capacity
best-response function for different cost configurations. Then Section 5 examines the
incumbent's capacity choice and the qualitative nature of the resulting equilibria. Section 6

concludes.

2. The Model

Consider a market for a homogeneous good in which two firms, an incumbent (firm 1)
and an entrant (firm 2), sequentially set capacities k; (i = 1,2), after which they simultaneously
choose prices p; (i = 1,2). At the capacity-setting stage, firms incur a lump-sum fixed set-up cost,
F, that can be avoided only if zero capacity is installed. In addition, there is a constant per unit

cost of capacity, r. Hence, the two firms have an identical cost of capacity function, defined as:

F+1kif k. >0
1 pky ={ ,i=1,2.

0 ifk,=0
In the final price-setting stage, firm 1 incurs a constant unit cost of production up to the capacity
limit k.. We denote this cost by c;. Thus, if firm i's realized sales at the price-setting stage are q

<k;, its variable cost of production is equal to

@) o) =cq forq, <k, i=12.

Output greater than a firm's capacity is assumed to be infinitely costly.

Summing the cost of capacity (1) and the cost of production up to capacity (2) yields the
cost structure commonly used in the examination of entry deterrence. (See, for example, Dixit
(1980).) We explicitly separate these two costs in order to highlight the distinction between the
cost of capacity, which is sunk before the final price-setting stage, and the cost of production,

which depends on realized sales at the pricing stage.
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Aggregate market demand is assumed to be of the form

(3)  d(p) =max(1-p,0).

Linear demand permits closed form solutions for the equilibrium in the price-setting subgames.
It also provides an important benchmark for gauging the relative importance of the regions of the
parameter space {Cy, C,, I, F} over which different types of preemptive behavior are observed.
The qualitative results of our model would be similar, however, if instead demand were assumed
to be concave.

Because sharp capacity constraints limit the amount of output that can be supplied, firms
may have to ration customers at the prices they select. Following Levitan and Shubik (1972) and
Kreps and Scheinkman (1983), we assume that demand is rationed efficiently. Thus, if
P; <pj, then firm i sells min(k;, d(p;)) and firm j- faces a residual demand equal to max(0, d(pj) -
k.). This means that items are sold first to those consumers having the highest willingness to pay
if we assume that total demand is generated by a continuum of agents who purchase at most a
single unit of an indivisible good.!” When firms set identical prices, we assume that all demand
first flows to the low-cost firm and that the high-cost firm serves any residual demand. To break
ties when ¢, = ¢,, we arbitrarily let firm 1 sell its capacity first. 18

With this rationing rule, and ignoring sunk set-up and capacity costs, the profit to firm i

in the price-setting subgame when it sets p, and firm j sets P; is

17Altematively, with elastic individual demand, such a rule would result if there were an efficient
resale market among consumers.

18Any alternative division of sales when firms choose identical prices (such as making them
proportional to capacity) would generate the same equilibrium profits in the pricing subgame, as
shown in Deneckere and Kovenock (1989b, Proposition 3).
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fLi(Pi) = (p;-cymin(k;.d@®;) -ifp; < P;

@ mopkpky) =9 Tp) = (pi-ci)rrﬁn(ki,max(O,d(pi)-I;kj)) if p; = p;

H; @) = (pi-ci)min(ki,max(O,d(pi)-kj)) ifp, > P;

where I;l is an indicator that takes on the value 1 if c;,> cj, 0L C; =Cy and i = 2, and takes on the
valueOifci<cj, or ¢, =czandi= 1.

In the analysis that follows, we rule out strategies in which firms price below their unit
production costs. 19 1ets ; = [c;;1] denote the pure strategy set of firm i, and write Z; for the
corresponding set of mixed strategies (the set of cumulative distribution functions F; on §,). The
profit function 7, extends in a natural way to an expected profit function on %, X %,. For any
quadruple of capacities and costs (k.k,,c;,¢,), the price-setting subgame is then a normal form
game G(k,.k,,c;,C,), With players i=1,2, strategy sets X, and expected payoff functions
ni(F 1’F2)'

In Sectioﬁ 3 we demonstrate that there is a unique Nash equilibrium pair of payoffs in the
game G(krk'z’cpcz)’ denoted by “:(kl’kZ’cl’CZ) for i=1,2. Since we are interested in the
subgame perfect equilibria only, the three-stage game of sequential capacity choice followed by
simultaneous price-setting can be reduced to a game of sequential capacity choice with payoffs
Hi(kl,kzlcl,cz,r,F) = n:(krkz’cpcz) - p(ki). We call this game F(cl,cz,r,F). Throughout the .
continuation we mostly ignore trivial cases associated with drastic cost advantages by assuming
that ¢; < (1 +¢ +1)/2, i=1,2, j#i

Let the inverse demand function corresponding to (3) be denoted by P(q) = max {0, 1-q}.
In analyzing the game I, we often need to refer to best-response functions in the quantity-setting

game with inverse demand function P(q) and various cost functions. Let Qf(kj) = arg max,

{[P(q+kj) -Glq}, Qir(kj) = arg max, {[P(q+kj) -¢;-rlq} and QlF(k]) =arg max, [P(q+kj)q -¢q -

19We therefore rule out any weakly dominated strategy that is not the limit of a sequence of
undominated strategies.



12

p(q)] be the best-response functions corresponding to the cost functions cg, (c; +1)q, and c,g +

p(q), respectively. More precisely:2°
Q¥) = max (0,5 (1- k- &)
Qi) = max (0,5 (1 - k- ¢; - 1))

1 .
5(1-k -c.-1) if k;<l-c;-r-2vF
Fap=4> 7 e

0 otherwise.

Let kC(a,B) = (klc(oc,B), kf,_: (a,3)) be the intersection of Q? and Qg, for o.,p € {c,r}. Thus,
for example, kf(r,r) =(1-2¢+ G- r)/3 are the Cournot capacities when firms have unit costs ¢; +r
(i=1,2). Analogously, letkS(a,B) = (ki(oc,[?:), k;(oc,B)) be the Stackelberg equilibrium point when the
leader (firm 1) has cost structure o and the follower has best-response function QB, foro,p e

{c,r,F}. For example, ksl(r,r) =(1-2cy+cy-1)/2,and k;(r,r) =max(0, (1 - 3¢, + 2¢; - 1)/4).

3. The Price-Setting Subgames

We now derive Nash equilibrium profits in the price-setting subgame G(kl,kz,cl,cz). For
a more complete treatment see Deneckere and Kovenock (1989a, b), which shows that, except in
cases where the high-cost firm makes zero profits, equilibrium strategies are uniquely
determined.

To describe equilibrium profits note that, for some ranges of costs and capacities,
equilibrium exists in pure strategies, while in other regions, equilibrium requires nondegenerate

mixed strategies. Figure 3 illustrates these respective regions for the case where ¢; < ¢c,. If both

20Note that we have assumed that the best-response function QF is left continuous; this ensures
that in a Stackelberg game the leader can always attain the supremum of its profits, so that an
equilibrium exists.
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firms' capacities are sufficiently small, so thatk; < Qf (kj) for each i, then there is a unique Nash
equilibrium in which both firms set the price P(k, +k,) =1 -k, - k, and produce at full
capacity. Respective profits are given by n: =(1-k;-k,-¢)k;, i=1.2. This region is labeled
region A in Figure 3.

In region B = B; U B, U B3 U By, the equilibrium involves nondegenerate mixed
strategies. The derivation of equilibrium expected profits follows a simple procedure. Note first
that firm i makes at least as much profit when it is the low-priced firm as when it is high-priced.

Hence, firm i can guarantee itself a minimax profit of Hf =max H.(p) = [max(1 - k; - kj,
p

l%ﬁ, c;) - ¢;1 - minfkj, l-%ﬁ] by charging the price which maximizes its profit under the
assumption that it is the high-priced firm, p? = argmax H,(p) = max(1 - k; - kj, l-k;ci , Ci)'21
P

This implies that, in equilibrium, firm i never charges a price at which it receives a profit less
than Hf when it is the low-priced firm. More specifically, firm i never charges a price less than

p;=min {p: L,p) = Hj }. For our linear example,

1-k;k; if ki<1-c;-2k;

1-k.-c; 1+c:
(5) pi= max{%l( 2‘°‘)Z+ci, ;cl -%[kj(z(l-ci)-kj)] Y 2} if 1-c;-2k;<k<1-¢;
G

if kJ-ZI-ci.

Any price below p; is payoff-dominated by charging p?.

To distinguish between the two firms in region B, suppose that p; <p;. Then firm ]
knows that it is never undercut at prices below p;. Since Lj(p) is increasing on the interval below
p;, neither firm ever charges a price below p..

One can easily show that in this region, when D; < p;, we have p, > Pk, + ky)) =
max(©, 1 -k, - k,). Let §k be the upper bound of the support of firm k's equilibrium price

25 kj 2 1 - ¢;, we use the convention that p? =C;.
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distribution, F;, and define s = max{'s'l, 52}. Clearly, one has's > P(k1+ k,). Hence, at least one
firm must sell strictly less than its capacity when it sets its price equal to s. Furthermore, at most
one firm can have a mass point in its equilibrium price distribution at s. (If both had a mass
point, each firm could increase expected sales discretely by moving its mass point slightly below
s.) This implies that for some firm k, § is contained in the support of F; and firm k's equilibrium
profit is Hk®' For this firm to be playing a best response to its rival's strategy, we must have
s = plI;I. Hence, firm k's equilibrium profit equals H;:. If B <p; firm j can always assure itself an
equilibrium profit strictly greater than H;, since Lj @) > Lj(pj) = H;. Therefore, firm i earns H:
Lets ; be the lower bound of the support of firm j's equilibrium price distribution, and
suppose that 5> By Then firm i could set a price p between p, and 5 and earn
L@ >L@) = H:, a contradiction. Hence, 5= and firm j's equilibrium profit is Lj(p-i)'
Following this procedure, to determine equilibrium profits in region B, one needs only to
calculate p = max{p,, p,}. Equilibrium profits are then L;(p), i = 1,2. An explicit functional
form for profit when demand is described by (3) appears in Deneckere and Kovenock (1989a)
and is replicated in the Appendix for convenience. Under our assumptions, region B can be
partitioned into two connected subregions in which D; 2 p, and p, >p,. The common boundary
of these two regions is comprised of capacity pairs k; >0 and k, > 0 for which p, =p, and is
denoted by 6,(k;). In our linear example this boundary consists of all (k;, k,) pairs that solve
k(1 -k, - ¢ )% + 4k ky(c, - ¢1) - ky(1 - k, - €)% =0, with k, ranging between kf(c,c) and k, =
d(cz). For k1 2 d(c,), p_z(kl, k,, Cy> 02) equals c,, and the boundary 0,(k;) coincides with the
horizontal line k,= (p(cl, 02) =1l-¢;- 2[(1 - cz)(c2 - cl)]l/z. Capacity pairs (kl’ kz) with kl >
d(c,) and k, <¢(c,, ¢,) remain in region B; the price-setting equilibrium requires nondegenerate
mixed strategies. Capacity pairs in the set {(kl, k,) : k; 2d(c,) and k, 2 ¢(c;, c,)} lie in the
classical Bertrand region (region C in Figure 3); equilibrium requires that the low-cost firm price

» * . -
the high-cost firm out of the market, so that &, = 0. Given our assumption that no firm ever

prices below its unit cost, firm 1 earns n: = max (p - ¢ )min(k;, 1 - p).
pP=c,
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The curves k; = lI’i(k]-) are the loci of points (k;, k,) for which firm i is exactly capacity
constrained when it charges p;; i.e., d(p;) =k;. For the demand function 3, ‘I’i(kj) =
1- Ci

1 .
—5—+5 (k [2(1 - ) - g1} for 0 <kj<1-¢; and ¥k =1-c; fork;21-c;. Using these

curves, we may further subdivide region B into four different regions. Inregion By,

k, > d(p,) and p, >p,;. Hence, equilibrium profits are given by “; =L,(py) = (py - ¢,) d(@y)
and ; = L; (py) = (pa - ¢ ky. Inregion By, k;, <d(py) and p, >y , S0 that T, = (2, - ¢ k,
and T} = (py - ¢;) k. In region By, k; <d(p;) and p; >y, and hence 0, = (p; - ¢5) k, and
71:’; =(p; - ¢1) k;. Finally, in region By, p; > pj but d(p;) <k, so that n;g =(p;g - Cy)k, and

75: =(p; - ¢ d@y)- -

The analysis of the case where ¢, < ¢, is entirely analogous and is illustrated in Figure 4.
Inregion A, k; < Qf(kj) fori=1andi=2, so that there is a pure strategy equilibrium in which
both firms charge P(k; + k) and produce at full capacity. The curve 8,(k,) again divides the
regions where p; > p, and p; > 1)_1.22 Equilibrium profits are L;(p;) over the region where
Py > By and L;(py) over the region where p, > p;. In region C, firm 1 is forced to exit the market,
so that 7, =0 and 7, = max (p - c)min(k,, d()).

We may summarize the behavior outside the pure strategy region A as follows: When
D > Dy, firm 1 prices passively by providing a stochastic price umbrella for firm 2.23
Consequently, here we have nI = H: and 11:; =L,(p;). When c; = c,, the inequality p, > p, holds
if and only if k; >k, so that large firms price passively and small firms price aggressively.
When c; > c,, the region where p; > p, strictly includes the region where k; >Kk,; when
¢y <cC,, the opposite is true. Thus, as is emphasized in Deneckere and Kovenock (1992), high

costs induce more passive pricing behavior.

22Eor k, ranging between kg (c,c) and d(cy), this curve is defined by the implicit equation

ko(1 -k, - cp)? + 4k ko(cq - Cp) - Ky (1 - kg - c9)?=0. Fork, = d(cy), 01(ky) = ¢(Cg, ¢1) =
1-cy-20(1-cp)ey - 2.

23We use the term aggressive pricing to indicate that a firm undercuts its rival with sufficiently

high probability so as to keep that rival at its minimax profit level. The rival, which allows itself
to be undercut sufficiently often, is then said to price passively.



16

4. Capacity Best-Response Functions

Before proceeding with the derivation of the follower's best-response function in the
game I'(c{,c,,1,F), we would like to provide some intuition for why and how this best-response
function differs from the standard quantity best-response function in the Cournot and Stackelberg
models. The distinction between our capacity best-response and the standard quantity best
response emanates from the following observation: In quantity-setting models a quantity placed
on the market is a commitment to drive price down to the level that clears all quantity from the
market. In the three-stage game of sequential capacity choice followed by simultaneous price-
setting, capacity is not a commitment to drive price down to the capacity clearing level.

This fact has two major implications. First, when firms' costs are not too dissimilar and
for capacities outside of the region under the lower envelope of the Cournot best-response
functions Qic(kj), the larger firm acts relatively passively in pricing.24 This provides an incentive
for a follower to set a capacity above the quantity best-response function when the leader’s
capacity is sufﬁéiently large. In this range, the gain from the follower's expansion of capacity
beyond the level corresponding to the quantity best response is only partially offset by a
(stochastic) price reduction.

The second major implication is that firms whose efficiency considerably exceeds that of
their rivals act more aggressively in setting capacity than they would in quantity-setting games.
Efficient followers need not take their rival's capacity as a commitment to sell. Instead, they may
decide to increase their own capacity to accommodate all of the demand at their rival's unit cost
of production and proceed to price the rival completely out of the market. Hence, Bertrand
behavior may displace Cournot behavior.

The potential for this type of aggressive response has an important effect on the behavior

of a leader with high unit production costs. Such a firm will restrict its capacity in order to

24 A5 shown in Section 3, this statement is literally true when the larger firm is equally or less
efficient than its opponent. When the large firm is more efficient (e.g., ¢{ <C,), the statement
also holds true in the region where p; > p,. This suffices for our purposes, as firm 2's quantity
best-response function is entirely contained in this region whenever (k;.k)) ¢ A.



17

render it optimal for the more efficient firm to restrict capacity and price passively rather than to
expand capacity and price aggressively.

In the analysis that follows, we characterize the parameter values that delineate these two
types of behavior. From the equilibrium profits ITj(kj, k2 | ¢y, c2, ¥, F) of the price-setting
subgames, we can calculate the optimal capacity choice of the follower in the second stage of our

three-stage game:

Rk = arg]:nax Ia(ki, kot e, €2, 1, B).
2

Define Ro(kl) to be the follower's capacity best-response function when the fixed set-up cost is

equal to zero:
RO(k1) = argmax I (k3, kp I ¢y, ¢2, 1, 0).
ky

Since the follower's profits are nonincreasing in k;, and since a fixed set-up cost does not affect
the best—responsé capacity unless profits become nonpositive, R(k;) coincides with Ro(kl) below

a critical value of the leader's capacity:25

ROk,) ifk, <km
R(k;) =
0 if k; 2 k™.

The critical value k™ is defined by26

km (01, C2, I, F) = max {kl: Hz(kl, Ro(kl) | Cl, 02, I, 0) = F}.

25Following Dixit, we assume that whenever the follower is indifferent between entering and
staying out of the market, no entry occurs. More generally, whenever the follower's best-
response correspondence is multiple valued we assume that the follower takes the action that
maximizes the leader's profit. This ensures that the leader's first-stage profit function
I1;(k;.R(k;)lcq,co,1,F) is upper semicontinuous, so that an equilibrinm always exists.

26we adopt the following conventions in the definition of k™: if the set over which k; is being
maximized is empty, then k™(c,, ¢,, I, F) = 0. If the set is equal to R+, then k™(cy, €y, T, F) = oo,
Note that the former case occurs w%len F is sufficiently large, and the latter case occurs when

C, is not too much larger than c; and F is sufficiently small.
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~ Because of this simple relationship between R(k;) and Ro(kl), we will first assume (in order to

simplify our presentation) that F = 0 and study how Ro(kl) depends on the remaining parameters

Cy, Cy, and I. Figure 5 illustrates the different cases that may arise.

Proposition 1: Suppose r = (1 - 2¢c, +¢;)/2. Then Ro(kl) = Q;(kl).

Whenr2 (1 -2¢, +c¢q)/2, Q;(kl) lies entirely in region A. The cost of capacity is so high
that it is never optimal for firm 2 to select a capacity k, such that (ky,k,) lies outside of region A,
even if this firm is cost advantaged. Since all capacity pairs in region A lead to price-setting
equilibria in which price clears all capacity from the market, Ro(kl) coincides with Q;(kl).
Figure 5a shows an example of this type of best response, where ¢; =c, =0 andr=.5.

In the next proposition, the inequalities r < (1 - 2¢, +¢4)/2 and ¢y 2 ¢; - A(c,r) hold, for
some function A(cy,r) satisfying A(c,,r) >r. The capacity cost is then small enough that Qrz(kl)
lies outside of region A fork, > kf(c,r), but firm 2's cost advantage (if any) is small enough that
it is never optimal to drive firm 1 out of the market. As in Proposition 1, Ro(kl) coincides with
Q;(kl) fork; < k(f(c,r). However, for k; > k?(c,r), Ro(kl) lies entirely above Q;(kl). This is
most evident for k; > d(c,), where Q;(kl) =0 but RO(kl) > 0. Recall from Section 3 that
n;(kl, k,, €1, €5) >0 for k, > 0 if ¢, < ¢; and for 0 <k, < ¢(c;,¢,) if ¢; <c,. The condition
r < (1 - 2¢c, +¢;)/2 then insures that there exists Ez >0 such that I, = 11:23k -1k, >0 fork, €
(0,k,), regardless of the value of k. As in Gelman and Salop (1983), by choosing a sufficiently
small but positive capacity, the follower can guarantee that the leader does not find it profitable
to drive the follower out of the market in the price-setting subgame. The leader then prefers to
provide a stochastic price umbrella for its relatively small rival, rather than to lower its price
sufficiently far so as to make it impossible for the rival to obtain any profitable sales.

To be more specific, define the judo capacity of firm 2 by A, (¢4, ¢, 1) = arg rrégx
{I1y(d(cy).ky)}. Note that A, provides firm 2 with the highest profit attainable in region B,
since p; (and hence, I1,(k;, k,)) is independent of k;inBy. Let K (cqs €9, D) =inf {ky:
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(x (kn,lka;){ Ba) I, (k;, ky) < T1, (d(c,), Ay)}. Thenforky <k firm 2's optimal response lies in
2:(£1,X2) € B3
region B; and fork; 2 k' firm 2's optimal response lies in region B 4 Finally, define A(cy1)=c

ot

-min{cy: Tk, Ay, €4, Cy) 2d(Cy)(cq - Cp - 1)}. We can now state

Proposition 2: Suppose r < (1 - 2¢c, +¢{)/2 and ¢, 2 ¢; - A(cy, 1). Then the capacity best-

response function is given by

Q;(kl) if0<k; < ks(c,r)
©  RUED =9 (2(1-cp) - [(1-e1? - 12K (croxD2}3 i k(o) <k <K

Aa(c1, 2, 1) ifk; >kJ.

In Proposition 2 the middle branch of Ro(kl) lies in region B3. Ifc; <c, +1, Ro(kl) has a
negative slope over this range (see Figure 5b), while if ¢, > ¢, + 1, it has a positive slope

(see Figure 5c). Either way, a Proposition 2 best-response function jumps down when

k= K7 (c5 €9, 1)- At the point k; = I, firm 2's maximum profit from responding with a capacity
that leaves firm 1 capacity constrained at p; equals its profit from setting k, = &, (¢4, €5, 1), 2
capacity sufficiently small that firm 1 is not capacity constrained at p;. For k; > kI firm 2

responds optimally by selecting its judo capacity A,.

Proposition 3: Suppose r < (1 - 2¢, + ¢¢)/2 and ¢; <c¢; - A(cy, 1). Define ku(cl, Cy, I) =

inf {k: d(c{)(c;-¢cy-1) 2 max ko)t
{ 1 ¢ 1)( 172 ) {ko:(ky.ko)e AUB3UBy) HZ(kl 2)}

Q) if k1 € [0, min(k$(c.), k9]
Then ROkD) = (2(1-c1) - [(1-c1)2 - 12Ky (er-cpD2Y3 iy € (min(ky (o), kW), k]

dcy) if >k,
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In Proposition 3, the follower's cost advantage is then sufficiently large and the cost of capacity
sufficiently low that driving the leader out of the market in the price-setting subgame is optimal
whenever k; exceeds some critical level kU. Note that under the assumptions of Proposition 3 k%
always exists and k% < kJ. For k; k"% RO(k,) coincides with the Proposition 2 best-response
function, which is given by equation (6). For k; > kY, the follower sets a capacity just large
enough to serve the market at a price equal to the leader's unit cost of production, Ro(kl) =d(cp).
Note that kU may be greater than or less than kf(c,r); that is, the upward jump in RO(k,) may
occur in region A or region By. The boundary of cost parameter sets distinguishing these two
possibilities is given by ¢, = (5¢; - 4r - 1)/4.27 Figure 5d illustrates Ro(kl) when the jump point

occurs in region B, and Figure 5e depicts the situation when it occurs in region A.
g1 3 g p gl

As noted earlier, a fixed set-up cost alters the capacity best-response function only when
it causes the follower's profits to be nonpositive. The follower opts for staying out of the market
whenever the leader's capacity exceeds some critical capacity level k™, whose value depends on

which of the conditions of Propositions 1-3 hold. Under the conditions of Proposition 1 we have

Proposition 4: Suppose r 2 (1 - 2¢4 +¢,)/2. Then

ROGk)) ifk, <km
R(kp) =

0 if k; > kM

where kM= 1-c, -r-2VF.

27For cp <(5¢q -4r-1)/4, K% =1-cy-1-2[(1 - c;)(cq - &5 - D]Y2 and for ¢, > (5cy - 4r - 1)/4
kU =(1-c?16(cq - ¢y - D]
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Observe that in this case R(k;) = Qg(kﬂ’ so that the outcome of our three-stage game
then coincides with the Stackelberg outcome kS(F,F). Under conditions parallel to Proposition 2,
we have

Proposition 5: Supposer < (1 - 2¢c, +c¢¢)/2 and ¢, 2 ¢q - A(cy,1). Then

ROk, ifk, <k®
R(k1) =

0 if k; 2 k™

where kM is given by28 -

oo if nz(kj,lzlc 1,02,1',0)>F
€)) km =9 n(cy,Cq.1.F) if I'Iz(kJ ,lecl,cz,r,O)SF<H2(kC (c.n)ley,¢9,5,0)
1-cp-r-2VF if F2IT,(kC(c.1)lcy,6o,1,0).

Note that for k; > k! (4> ¢y, 1) the follower's capacity best-response Ro(kl) is constant at the level
A,(cy, €y, 1), and that RO(k,) lies in region B, where subgame equilibrium profits are independent
of k;. Consequently, if F < I'Iz(kI » Ay lcy, €, 1, 0), then R(k;) coincides with the expression for
Ro(kl) given in equation (6). When 1'12(kJ sAylcy, Gy, 0)SF< I'Iz(kc(c,r) fcys €9, 1, 0), the
jump point kM lies on the second branch of RO(k,) in equation (6). Finally, when F 2 ITy(kC(c.p) |
Cy» €, T, 0), the jump point occurs to the left of kf(c,r), so that R(k,) is equal to Qg(kl).

The remaining two propositions parallel Proposition 3.

28The function M(c 1> 2> T, F) below is strictly decreasing in F and is given by the positive root of
the following quadratic equation ink;: 16(c; - ¢, - )3 k% +[8(L-cp2(cy-Cy-12-
36(1 - cy)(cq - €y - DF + 27F2]k; + (1 - ¢1)3 [(1 - ¢1)(cy - ¢ - 1) -F] =0.
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Proposition 6: Suppose r < (1 - 2¢5 +¢4)/2, €5 <¢q - A(C4,1), and d(cy)(cy - ¢ - D) <
I,(kC(c.p)icy, Cy, 1, 0). Then

ROk,) ifk; <km
Rk = .
0 ifk; 2km
where
oo ifd(cl)(cl 'Cz‘r) >F

(8) km =9 n(cy, ¢y, F) ifd(cy)(cy-cp-N<sF< H2(kc(c,r) I ¢y, €9, 1,0)

1-cy-1-20F if F2IL,(kC(cr) ¢y, ¢y, 1, 0).

In Proposition 6, when F < d(c;)(c; - ¢y - 1), R(k;) coincides with Ro(kl). Fixed costs are then

small enough that for k, > k" the follower prefers to price the leader out of the market rather than

staying out itself. When d(c P€1-cp-1)<SF< Hz(kc(c,r) I'cy, €y, 1, 0), the jump point occurs on

the upward-sloping branch of Ro(kl) given by the middle expression in (6). Finally, when

F2 &S, I ¢;, €y, T, 0), Rk = Q5 (ky)-

In Proposition 7 kU < kf(c,r), so that Ro(kl) contains no upward-sloping branch.

Proposition 7: Suppose r < (1 - 2¢5 +¢1)/2, ¢y <c¢q - A(cy,0), and d(cy)(cy - cp - D) 2
TL,(k5 (c.0)icy, ¢y, T, 0). Then

ROG)) ifk; <km

R(k,) = { .
0 if k, > km

where
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o ifd(cy)(cy-cy-)>F
km =
1-cy-r-2F if F2d(cy)(c; - cy-1).

This case differs from the case treated in Proposition 6 because RO(k,) jumps directly
from region A to region C. If F < d(c;)(c; - ¢, - 1), there is no change in the follower's capacity

best response. If this inequality is reversed, R(k;) = Qg(kl).

5. Entry Accommodation and Deterrence

The analysis of the follower's best-response function in Section 4 now allows us to
examine the optimal choice of capacity by the leader and thus the potential for entry deterrence.
The leader chooses the capacity k, that maximizes the profit I 1&ky, R(ky)lcq, ¢, 1, F) obtained
when the follower responds with R(k;). Following Bain (1956) we distinguish between capacity
choices for which entry is accommodated, blockaded, or deterred. Entry is said to be
accommodated if the capacity choice of the incumbent is- such that the optimal response of the
follower is to choose a positive capacity. Entry is blockaded if the incumbent's monopoly
capacity Qli(O) for unit cost ¢; + r—i.e., the capacity it would set in the absence of the threat of
entry—suffices to induce the follower to respond with zero capacity and hence stay out of the
market. Entry is deterred if it is optimal for the incumbent to strategically set a capacity greater
than Qi(O) in order to induce the follower to respond by setting zero capacity.

Depending on the assumed values of the cost parameters, our model obtains a wide range
of qualitatively distinct outcomes in the three-stage game. Entry is accommodated when the
fixed set-up cost F is sufficiently smail given the differences (which cannot be drastic) in the unit
costs of production up to capacity and the cost of capacity. In the case of accommodated entry,
the incumbent may behave accbrding to the Sylos postulate, so that price is driven down to a
level that clears all capacity, or it may provide a stochastic pricé umbrella under which the
entrant can pick prices. The cost of capacity and the unit costs of production up to capacity

determine which outcome occurs. For high capacity costs, entry accommodation (when it
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occurs) leads to Stackelberg behavior. For low capacity costs, the nature of equilibrium depends
on unit production cost asymmetries. Judo-like behavior arises if the incumbent has the lower
cost of production or if it is not too cost disadvantaged. In judo equilibrium, the incumbent sets a
large capacity and the entrant a small capacity, so that a nondegenerate mixed strategy arises at
the price-setting stage. In this equilibrium the incumbent sets higher prices on average than the
entrant, and both stochastically reduce output below capacity. When capacity costs are low and
the incumbent is sufficiently cost disadvantaged, the incumbent must reduce its capacity below
the Stackelberg level to avoid facing an aggressive capacity response by the entrant and hence
the possibility of being driven out of the market at the price-setting stage. The entrant, firm 2,
responds by setting capacity along Q;(kl), so that in equilibrium both firms produce at full
capacity. We call this type of outcome a reverse judo result. Finally, when the capacity cost is
low and the incumbent has a moderate cost disadvantage or when capacity costs are intermediate
and the firms' unit costs are not too different, entry accommodation yields kf(c,r) as the leader's
capacity. The foﬂower responds with kg (c,r) and firms set prices to clear all capacity from the
market. Hence we obtain equilibria with capacities between the Cournot levels kic(r,r), i=1,2 and
the Stackelberg levels kis(r,r), i=1,2. These correspond to the equilibria in Dixit's (1980)
quantity-setting model.

Figures 6a and 6b show the qualitatively distinct ranges of accommodating equilibria as
the difference in the unit production costs of the two firms and the cost of capacity vary. Figure
6a illustrates the nature of equilibrium as a function of r and ¢, holding F = ¢, = 0. In this case
the entrant is cost advantaged. Figure 6b illustrates the type of equilibrium as a function of r and
C,, holding F = ¢ = 0. In this case the incumbent is cost advantaged.

To understand how to match the qualitative information contained in these pictures with
the analysis of the capacity best-response functions in the previous section, consider Figure 6a.
When ¢; =r =0, firm 2's best-response function is given by Proposition 2, as illustrated in Figure
5c. Along this best-response function, firm 1 clearly optimizes by selecting either kcl:(c,r) or kJ.

When ¢, =0, the middle branch of RO(kl) is actually flat, since in region B firm 2's profits are
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given by szI (ky)/k;. Firm 1 is therefore indifferent between kcl:(é,r) and any other point along
the middle branch of Ro(kl). Atky = kJ, firm 2's capacity jumps down to the judo level Ay,
making kl = kJ the optimal choice at cy= 0.2 As cy increases, }.2 increases, making firm 1
eventually prefer k, = kf(c,r). The nature of the equilibrium then shifts from a judo equilibrium
to a pure strategy equilibrium between the Cournot and Stackelberg levels k?(r,r) and ki(r,r). As
¢, further increases, the best-response function becomes that given in Proposition 3. As long as
ku2> k(f (c,r), the equilibria remain of the Dixit type. For c; sufficiently large, however, k! <
kf(c,r), and firm 2's best-response function is as indicated in Figure Se. Firm 1 then optimizes
by choosing k; = kY, resulting in a reverse judo equilibrium. As ¢ further increases, kU
converges to zero, eventually yielding firm 2 a monopoly position.

If we start at the origin of Figure 6a, but instead gradually raise r, then as argued above
the equilibrium is initially of the judo type. Asr is increased, Ro(kl) shifts down, and k(f(c,r)
eventually becomes the preferred point. This again leads to pure strategy equilibria akin to the
equilibria in Dixit's (1980) quantity-setting model. Further increases in r eventually push klc(c,r)
beyond the Stackelberg point on Q;(kl), resulting in the Stackelberg outcome. The analysis of
the remainder of Figures 6a and 6b is similar.

Since the fixed set-up cost parameter F only affects the entrant's decision to enter the
market, changes in F affect accommodating equilibria only insofar as the incumbent's choice of
whether to accommodate or prevent entry (or possibly to stay out itself) is altered. Hence,
conditional on accommodation arising, the characterization of the equilibria in Figures 6a and 6b
will hold for other values of F as well.

As is evident from the figures, the Bertrand-Edgeworth approach provides a useful game-
theoretic model in which seemingly disparate entry equilibria that have previously appeared in

the literature are obtained as subgame perfect equilibria for different ranges of the cost

2Since capacity costs are zero, values of k; exceeding k! are also optimal. However, such
responses necessarily disappear when r becomes even slightly positive, and we therefore ignore
them in our discussion.
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parameters Cq, C,, T, and F. Stackelberg's quantity-setting solution arises for accommodating
equilibria involving a large cost of capacity. Lower costs of capacity may be associated with
equilibria similar to the quantity—éetting equilibria advocated by Dixit (1980), with stochastic
price-setting versions of the judo equilibria presented in Gelman and Salop (1983), or with the
reverse judo equilibria of Deneckere and Kovenock (1989a,b) and Faith (1990). Which of these
qualitatively distinct equilibria arises is determined by unit cost asymmetries and the cost of
capacity.

Entry is deterred in our model when the fixed cost F is sufficiently large to make
deterrence more profitable than accommodation, but sufficiently small so as to preclude
blockaded entry. When entry is successfully deterred, excessive capacity built to deter entry may
be utilized completely or may be left partially idle. Hence, unlike models in previous papers in
the literature, our model provides support for the use of idle capacity to deter entry, while
maintaining a post-entry simultaneous move structure, subgame perfection, and standard
assumptions on demand (such as linearity). Idle capacity is more likely with a more efficient
incumbent than a less efficient one (as measured by unit cost of production up to capacity) and is
more likely the lower the cost of capacity. Excessive, but fully utilized, capacity is more likely
to be chosen as a preemptive strategy the higher the cost of capacity and the higher the fixed set-
up costs.

To illustrate the type of outcomes that might arise, consider the four capacity best-
response functions R(k;) shown in Figure 7. These represent best-response functions for
¢ = 0,¢cy = 0, and r = .05. Figure 7a shows a case where the fixed cost F is less than
I'IZ(J»:J , ?Lzlcl, Cp, T, 0) and entry is accommodated. The cost of capacity and the fixed cost are
sufficiently small that a judo outcome arises in which the leader sets a large capacity and the
follower a small capacity, and the leader provides a stochastic price umbrella under which the
follower prices. The dashed lines in the figure illustrate Qic(kj), i=1,2. | Figure 7b illustrates a
case in which F is sufficiently large that R(k;) jumps down at a point k™ > Q‘i(O). In this case

firm 1 chooses k™ as its capacity and firm 2 responds with k, = 0. In the final price-setting
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stage, firm 1 sets price equal to P(Q‘;(O)), the monopoly price for unit cost ¢;- Entry is deterred
with excess capacity (k™ - Q;(0)), some of which (k™ - Q{(0)) is left idle.

In Figure 7¢ the jump point k™ lies between QE(O) and Q‘l’(O). It is optimal for firm 1 to
setk; =k™ and deter entry. Since, when faced with a unit cost of production up to capacity of
¢y, firm 1 would like to produce Qi(O), it produces at full capacity q; = k™. Entry is deterred
with excess capacity (k™ - Qi (0)) that is fully utilized. Itis interesting to note that a necessary
condition for entry to be deterred with excessive but fully utilized capacity is that the cost of
capacity be positive. This insures that Q}(0) < Q{(0). The last frame of Figure 7 illustrates the
case where F is sufficiently large that entry is blockaded, k™ < QE(O). In this case firm 1 sets
capacity k; = Q}(0) and prices at P(Q](0)).

Figure 8 shows the quaJitative nature of the equilibria that arise for ¢; =c, =0 and
different (r, F) pairs. The values of r and F corresponding to Figures 7(a) - (d) are labeled (a) -
(d). As these pictures show, larger unit costs of capacity are associated with smaller values of
the fixed set-up cost F that defines the boundary between regions where entry does and does not
occur. However, when entry is accommodated, the fixed cost F is not relevant in determining the
boundary between the regions of qualitatively different outcomes.

When entry is deterred, for any (r,F) pair for which idle capacity arises there is an r">r
such that (i",F) generates excessive but not idle capacity to deter entry. Correspondingly, for r>0
there is an F’>F such that (r,F") generates excessive but not idle capacity. The range of (r,F) pairs
for which entry is deterred with excessive but not idle capacity lies to the north and east of the
idle capacity range in (r,F) space.

For general (c;,¢,,1) triples, when the cost of capacity is sufficiently large, entry deterring
equilibria correspond to those of the Stackelberg model and hence never involve idle capacity.
Entry deterrence with idle capacity requires that the incumbent set a capacity greater than Q‘l:(O),
which is never profitable for r large enough to generate a Proposition 1 best-response function,
Ro(kl). A necessary condition for idle capacity to arise in entry deterrence is that Ro(kl) bea

Proposition 2 or 3 best response function. For Proposition 2 best-response functions, idle
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capacity to deter entry requires k™e (Qf(O),kJ]. For Proposition 3 best-response functions, idle
capacity to deter entry requires k" > Q{(0) and k™ & (Q}(0),k"]. Figures 9-11 depict the
qualitative nature of equilibria in (F,r) space for (¢{,¢5) = (0,.1), (.1,0), and (.3,0) respectively.

6. Conclusion

Since its inception, oligopoly theory has relied heavily on quantity-setting models of
competition. With the emphasis on extensive form modelling of oligopoly games that coincided
with the birth of the "new" theoretical industrial organization, the timing of firms' strategic
choices received more scrutiny. The basic observation that firms set prices as well as quantities
calls into question the use of the Cournot model as a reasonable reduced form for a more
complicated process of strategic interaction. In a seminal paper, Kreps and Scheinkman (1983)
showed that it was possible to obtain the Cournot outcome as a reduced form for a more
complicated process of simultaneous capacity setting followed by simultaneous price-setting.
This framework had popular appeal because it separated the quantity and pricing decisions of
firms and made the intuitively appealing assumption (at least for many markets) that prices can
more easily be set contingent on capacities than vice versa. At the same time, the approach lent
guarded support for the use of the Cournot equilibrium in modelling market behavior under
imperfect competition.

This paper takes the Bertrand-Edgeworth philosophy a step further by attempting to apply
the approach to one of the fundamental theoretical issues of industrial organization, the
profitability of credible precommitment to deter entry. In doing so, we provide a new and
intuitive answer to the question addressed in the literature on entry deterrence of whether it is
desirable to hold idle capacity to deter entry. We also provide a unified framework in which
several qualitatively distinct outcomes (some of which have been proposed previously in the
literature) appear as special cases. |

To understand the origins of this chameleon-like character of the Bertrand-Edgeworth

model, it is useful to examine how the degree of post-entry competition influences the outcome
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of the capacity precommitment game. Price-taking behavior in the post-entry game provides an
interesting benchmark because it appears at one extreme of the behavioral spectrum. With equal
marginal production costs, perfectly competitive pricing also ensures that firms will produce at
full capacity in the post-entry game. Vigorous post-entry competition thus renders the outcomes
favored by Sylos-Labini (1969) and Spence (1977) immune to the Dixit (1979) critique.30
Another alternative that merits attention is post-entry quantity competition, if only because this
case has figured so prominently in the entry deterrence literature.

Figures 12 and 13 are the analogues to Figures 6a and 6b, drawn under different
assumptions on post-entry competition. Panel (a) illustrates the outcomes of Dixit's two-stage
game3 1 and panel (b) those of the three-stage game with perfectly competitive pricing in the final
stage. A glance at these pictures reveals an amazing similarity with Figures 6a and 6b. In fact,
superimposing panels (a) and (b) in Figure 12 (13) reveals many common boundaries with
Figures 6a (6b). With the exception of the judo region, the outcomes under Bertrand-Edgeworth
competition thus coincide alternately with the outcome under perfect competition or Cournot
post-entry competition.?’2

To see why the Bertrand-Edgeworth model sometimes takes on the character of the
perfectly competitive pricing model, at other times mimics the behavior of the quantity-setting
model, and at still other times produces behavior which has no equivalent in either model, it is

useful to compare the respective capacity best-response functions. Figure 14a illustrates the case

300ne paper that models competition in this way is Dixon (1985).

31As shown by Ware (1985), Dixit's assumption that the entrant and incumbent simultaneously
select their output in the second stage of the game is not innocuous. This assumption allows the
incumbent to precommit to output before the entrant has committed its capacity. Ware shows
that in a three-stage game the possibilities for deterrence are more limited than Dixit suggests.
Outcomes close to the point V in Dixit's diagram are eliminated because the entrant can select a
capacity slightly above the quantity best-response function and induce the incumbent to produce
below capacity in the quantity-setting subgame.

32Note that it is not merely the case that whenever the two other modes of competition agree in
their predictions the Bertrand-Edgeworth model concurs. Indeed, in Figure 6b, judo behavior
displaces an area of common Stackelberg behavior in panels (a) and (b) of Figure 13.
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of a more efficient leader, with parameter configurations such that the equilibrium falls in the
Jjudo region of Figure 6b (but below the continuation of the upper boundary of the Dixit region).
As explained in Section 5, with Bertrand-Edgeworth competition, judo behavior displaces
quantity-setting behavior because to the right of the point V, capacity increases by firm 1 serve
only to reduce firm 2's post-entry profit. Under quantity competition, such expansion has no
effect, because it will never be used in the post-entry game. The follower thus responds less
aggressively under Bertrand-Edgeworth competition than under Cournot competition. In this
case, the Bertrand-Edgeworth model deters entry more effectively than the quantity-setting
model.33 -
Figure 14a also reveals that the Sylos postulate and price-taking behavior result in
identical capacity best-response functions. However, the outcomes under the two modes of
behavior do not coincide. The Sylos postulate produces the Stackelberg outcome, while price-
taking behavior results in entry being deterred, with the incumbent holding idle capacity. The
reason for this discrepancy is that with price-taking behavior the incumbent's profits are not
continuous at kp=0: in the absence of entry, the incumbent can produce at the monopoly level,
whereas small-scale entry forces the incumbent to utilize all available capacity. As a resuit, the
incumbent's behavior under Bertrand-Edgeworth competition is less aggressive than under price-

taking behavior. A comparison with the outcome under the Sylos postulate is ambiguous.34

33When capacity costs are sufficiently high, expansion to the judo point is no longer optimal; the
incumbent then behaves as in Dixit's model. One of the surprising results of our paper is that it is

never optimal for the incumbent to choose a capacity strictly between kf(c,r) and kJ1 when F=0.
Intuitively, this is because for low capacity costs the discontinuity in the best-response function
makes it optimal to expand to k{, while for high capacity costs the marginal benefit of expansion
inside region B exceeds the marginal cost.

34As illustrated in Figure 14a, judo behavior may lead to more aggressive incumbent behavior
than under the Sylos postulate However, the area of the judo region to the right of the dashed
line in Figure 6b has k =0, resulting in the opposite ranking.
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Figurés 14b and c illustrate capacity best-response functions when the leader is less
efficient.3’ The parameter combinations of Figure 14b lie in the Dixit region of Figure 6a, and
the entrant's cost advantage is sufficiently large that the Bertrand-Edgeworth capacity best
response never jumps down into region B4. In this case, large incumbent capacities increase
competition sufficiently to make the entrant prefer to drive the incumbent out of the market
altogether. The same force is present under price-taking behavior, but the upward jump in the
best-response function occurs earlier because the entrant faces more vigorous price competition.
The Bertrand-Edgeworth model now behaves like the Dixit model: capacity expansion beyond
the point k?(c,r) is never profitable since it provokes more aggressive responses. Price-taking
behavior and the Sylos postulate result in successively more aggressive incumbent behavior.

Figure 14c illustrates parameter configurations such that the equilibrium falls in the
reverse judo region of Figure 6a. The jump point in the Bertrand-Edgeworth and the perfectly
competitive pricing model then coincide, as both lie to the left of the point k(lz(c,r). In this case,
the entrant behaves least aggressively under the Sylos postulate and most aggressively under
Bertrand-Edgeworth competition. The capacity levels chosen by the incumbent reflect this
increasing order of aggressiveness.

We conclude that price-taking and quantity-setting behavior sometimes lead to plausible
market outcomes. When the outcomes under these post-entry modes of competition differ from
those under Bertrand-Edgeworth competition, we believe that the Bertrand-Edgeworth approach
provides a more appealing description of firm behavior.

Compared to the Bertrand-Edgeworth model, post-entry price-taking generally leads to
implausibly aggressive incumbent behavior.30 Price-taking behavior allows the incumbent

greater precommitment to aggressive pricing and therefore entails more passive entrant behavior.

35An example of such an industry is steel, where low-cost mini-mills have displaced higher cost
incumbents in all but the highest quality steel markets.

36An exception to this rule arises in the relatively small areas of parameter space where Figures
6a and b predict the judo outcome and Figures 12b and 13b predict the Stackelberg outcome.
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The comparison with post-entry Cournot competition depends upon the ranking of the
variable production costs. When the incumbent has a cost advantage, post-entry Cournot
competition leads to implausibly passive incumbent behavior. The aggressive and symmetric
price responses under Cournot competition lead the incumbent to choose relatively low
quantities in the post-entry game. This makes the return to expanding capacity small.37
However, when the entrant has a sufficiently large cost advantage, the incumbent behaves
implausibly aggressively under Cournot competition. The incumbent is committed to sell its
quantity even if this would drive the price below its variable cost. Under Bertrand-Edgeworth
competition, the entrant can price below the incumbent's variable cost without facing this
incredible threat, i.e., can eliminate competition from its high-cost rival.

We conclude that the Bertrand-Edgeworth model takes on the virtues of the quantity-
setting and price-taking models without inheriting their vices. By illustrating the benefits of the
Bertrand-Edgeworth model, we hope to stimulate further examination of its implications for the

organization of industry. We have little doubt that this will remain a fruitful area of inquiry.

371 Dixit's (1980) model, capacity expansion beyond the point k(l:(c,r) does not affect the post-
entry outcome.
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APPENDIX

Nash equilibrium proﬁts in G(ky,k,,¢;,C,) are as follows:
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Figure 1.
The Effect of Capacity Precommitment in a Price-Setting Duopoly with No Time to Build.
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