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ABSTRACT

Optimal linear regulator methods are used to represent a little-studied class of models of endogenous
equilibrium seasonality. Seasonal structure is built into these models in two equivalent ways: periodi-
cally varying the coefficient matrices of a formerly nonseasonal problem or embedding this periodic-
coefficient problem in a higher-dimensional sparse system whose time-invariant matrices have a specia
pattern of zero blocks. The former is compact and convenient computationally; the latter are used to ap-
ply familiar convergence results from the theory of time-invariant optimal regulator problems. The new
class of seasonality models provides an equilibrium interpretation for work involving periodically station-
ary time series.

*The views expressed herein are those of the author and not necessarily those of the Federal Reserve Bank of Min-
neapolis or the Federal Reserve System.



1. Introduction

Seasonal fluctuations account for much of the variation in many economic time
series. Moreover, theory suggests that seasonal behavior interacts in complicated ways
with nonseasonal behavior [Ghysels (1988), Hansen and Sargent (1989), Manuelli and
Sargent (1988)]. For these reasons, some economists have called for or proposed models
that trace economic seasonality to its roots in preferences, technologies, and endowments.
[See work by Ghysels (1988), Hansen and Sargent (1989), Miron and Zeldes (1988),
Osborn (1988a), and Singleton (1988).]

So far, however, economic models of endogenous seasonality have been limited in
important ways. Miron and Zeldes (1988) and Osborn (1988a) provide models that link
seasonality to a periodic environment (preferences, technologies, endowments); but they
derive only Euler equations—not explicit decision rules or laws of motion—and the
dynamic elements in their environments are relatively simple special cases. Explicit
decision rules and laws of motion under fairly general speciﬁca.tions. of dynamic
constra.int.s can, of course, be obtained from linear—quadratic (LQ) models. This LQ
framework has been used to analyze how endogenous variables are affected by seasonal
fluctuations in exogenous driving processes [Ghysels (1588), Sargent (1978b)]; by
adjustment costs with seasonal lags [Hansen and Sargent (1989)]; and by policy feedback
in the presence of seasonal filtering [Ghysels (1987)]. Except for the seasonal adjustment
costs, however, the published LQ work does not focus on seasonal preferences,
technologies, or endowments. Partly for that reason, it mostly deals with indeterministic
seasonality, largely ignoring aspects of the environment that are anchored to a particular
season.

In this article, I argue that economists have in hand the tools to explicitly model a
much broader range of seasonal phenomena as equilibrium outcomes resulting from
seasonal environments. First, I briefly review time-invariant LQ (TILQ) models. Then, I
argue that some interesting but previously little-studied economic environments with

seasonally varying preferences, technologies, or endowments can be represemnted using



periodic—coefficient LQ (PLQ) frameworks just as easily as time-invariant environments
are represented'by standard TILQ models. Finally, I demonstrate that any PLQ model
can be embedded in a higher-dimensional TILQ model with a particular pattern of zero
and nonzero blocks.

This embedding has two important implications. First, it shows that the TILQ class
of models contains the PLQ class. Since the PLQ class obviously contains the TILQ class,
this means that any phenomenon that can be represented within one of these classes can
also be represented within the other. In particular, the TILQ class can be used to
represent a broader range of seasonal models than the existing literature suggests.
Second, the theorems governing the convergence of decision rules and laws of motion in
TILQ models can be automatically extended to PLQ models. This is important because a
PLQ representation, being of much lower dimension, can be solved more efficiently on a
computer than can its equivalent TILQ representation. The special forms that the key
TILQ theorems assume in the PLQ case are thus useful for efficiently analyzing the
convergence of PLQ decision rules and laws of motion to periodic limits.

The embedding result is developed in Section 2, with some of the details relegated to
appendices. To illustrate some of the features of PLQ models, Section 3 presents a simple

example of endogenous seasonality derived from seasonal shifts in technology.

2. Periodic LQ modeling
The general LQ class of dynamic stochastic optimization problems is characterized by
the optimization of a time-varying quadratic objective subject to time-varying dynamic

stochastic linear constraints. Problems in this class can be represented by the
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Here,

s(t) maps the integers into an index set J [for example,

let J be the integers and let s(t)=t]

X, = an n x 1 state vector

v, = an m x 1 control vector

ft = an n x 1 white noise process
Pt1 = an n x n matrix

Rs(t) = an n x n matrix
Qs(t) = an m'x m matrix
As(t) = an n x n matrix
Bs(t) = an n x m matrix.

Under appropriate conditions, the solution to problem (1) is given by

Fy = [Qs(t) + BE(t)PtHBS(t)]_l [BE(t)Pt-i-lAs(t)]’ (22)

where [Qs(t) + BE(t)Pt+1Bs(t)] -1 is assumed to exist and Pt satisfies

Py=Rgq) + AE(t)P t+185(t) ~ [Af(t)PmBs(t)]

T -1 (xT
[Qs(t) + B (t)Pt+1Bs(t)] [B 5(6)F t+1As(t)] : (2b)
with P, given.! [Sufficient conditions for the solution are negative semidefiniteness of
1

P, and Rs(t) and negative definiteness of Qs(t); see Bertsekas (1976).]
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Hansen and Sargent (1980, 1981) and Sargent (1981) have shown how, in a wide
variety of economic models, the parameters of preferences, technologies, and endowments
can be captured in the matrices As(t)’ Bs(t)’ Rs(t)’ and Qs(t)‘ Their results make the
stochastic LQ framework attractive for analyzing dynamic equilibrium in economics. The
solution (2) is the dynamic programming solution; it simultaneously solves both the
control and the forecasting parts of problem (1). When (1) represents an agent’s dynamic
optimization under uncertainty, the Ft are the agent’s optimal decision rules. When (1)
represents a social planner’s problem, the planner’s decision rules can, in many cases, be
interpreted as the laws of motion in a rational expectations competitive equilibrium of the
economic aggregates. In either case, thé solution links the coefficients of the decision rules
Ft to the underlying parameters of the optimization problem, As(t)’ Bs(t)’ Rs(t)’ and
Qs(t)’ by complicated nonlinear mappings, as has been stressed by rational expectations
" modelers.

In practice, most economic applications of LQ techniques have involved the restricted
class of problems in which the matrices R, Q, A, and B are constant over time and the
horizon is assumed to be infinite. This focus is mainly because in setups with arbitrary
time variation or with short horizons, agents’ decision rules and the economywide laws of
motion can change rapidly over time. Such rapid variation makes it difficult to check the
empirical validity of the model with time—series data, either by traditional econometric
means or by the calibration procedure of Kydland and Prescott (1982).

By contrast, in infinite-horizon time-invariant models, decision rules Ft and laws of
motion (A -BF,) will be time-invariant and nonexplosive under certain regularity

conditions. That is, F, - F* and (A - BF, ) - (A —BF*) as t; -+ o, where (A -BF*)isa
0 0

stable matrix. These features make it much more practical to check the empirical validity
of a model’s decision rules and laws of motion with time—series data. Several applications
have been reported: Christiano and Eichenbaum (1987), Eichenbaum (1984), Eckstein
(1984), and Sargent (1978a) use a classical statistical approach to check empirical

validity, while Kydland and Prescott (1982) use their calibration method.



TILQ models readily accommodate some forms of seasonality, such as time-invariant
driving processes whose ARMA représentation implies seasonal spectral peaks or
quadratic adjustment costs of the form (kt - kt— p)2, where p is the number of seasons per
year. These are, in fact, the forms of seasonality analyzed in the TILQ models of Ghysels
(1988) and Hansen and Sargent (1989).

Other interesting forms of seasonality have not been emphasized in the economics
literature on TILQ models, nor are they as obviously representable within the TILQ
framework. For example, consider an industry of competitive firms that choose inputs n,
to maximize profits, subject to an industrywide demand curve that is less than perfectly
elastic and to seasonal variations in the productivity of the inputs or in the demand curve.
(For example, the variation might occur in consumers’ marginal utility of consuming that
industry’s output.) Even with (time-varying) linear production and demand functions,
the task of representing the industry’s competitive equilibrium as 4 planning problem
would require terms representing the interaction of the seasonal production or demand
coefficients and the second power of Nt’ the aggregate input. This task seems to require a
PLQ rather than a TILQ model.2 That is, we need a model in which As(np +) = Ai’
Bs(np+i) = Bi’ Rs(np+i) = Ri’ and Qs(np+i) = Qi’ where p is the period of the seasonal
cycle in the coefficients, i € {1,2,3,...,p}, and n is an arbitrary integer.

Failure to represent the type of seasonality just described would be a significant
drawback of the TILQ framework. One reason is that seasonal shifts in preferences and
production functions are perhaps the most natural and commonly cited sources of
economic seasonality. A related reason is that models which derive their seasonality from
exogenous seasonal ARMA processes or from adjustment costs with seasonal lags do not
readily explain the apparently common observation of seasonal phenomena containing
deterministic components anchored in a particular month or quarter.

These drawbacks of the TILQ framework are only hypothetical, however. As has
been long recognized in the engineering literature [Kailath (1980), p. 608], PLQ models

can be rewritten as TILQ models. That point is briefly developed here by sketching how



a PLQ model can be embedded within a higher-dimensional TILQ model. To keep the
discussion concrete, I consider the case of quarterly seasonality (where p = 4).

The embedding is accomplished by using two types of sparse matrices: a block
diagonal matrix and what I call a periodic matrix. Let diag [zl,zz,z3,z 4] denote the block
diagonal matrix with Zy, B, Zg; Zy 88 its diagonal blocks. Define the periodic matrix as

per [z 1/%95g2 4] , where

2y
20 0 0 0

per[z Loy ,z]:
1'%9:%3:%4 0 5y 0 0
|0 0 23 0 |

Then using diag and per matrices, an LQ problem in the form of equation (1) but with

quarterly variation in its coefficients can be embedded within the maximization of
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This maximization is subject to given values of {xlto’x2t0’x3t0’x4t0] and to the

constraint
(x 1 Sl N ¢ N v fe A
t+1 0 0 0 A4 X4 0 0 © B4 Vit §1t
2,11 _ A0 00y . B, 0 0 0 ||vg . €o
x3t+1 0 A2 0 0 [|xg 0 B2 0 0 ||vg §3t
X 50 0 A3 0 ‘ X4 .0 0 B3 0 ~V4t_ §4t
| Ct+1]

Vit Fi, 00 0 Jfxyy
o _ 0 th 0 0 x2t
Vs 0 0 Fa 0 ||xg
| V4t 0 0 0 Fupf|®a]

In the TILQ form of the system, each Xits Vi

dimension as X, Yy Rt’ Qt’ At’ Bt’ Ft’ and ft, respectively, in the original system. That

R, Q; A, B, F;, and ¢, has the same

is, the new TILQ system’s state space is (p=) 4 times larger than the PLQ model’s state
space. At any time t, in fact, only one component of the TILQ model’s state space
corresponds to X, in the PLQ problem. (The other three components can be thought of as
representing independent, parallel universes whose economic structure is identical except
for a 1—, 2—, or 3—quarter phase shift in the seasonal variation of the environment.) The
component that corresponds to X, from the TILQ problem cycles through the four
positions of the PLQ state vector, thanks to the periodic structure of the A and B
matrices. As that component cycles through the four positions, it interacts sequentially
with the four sets of seasonal coefficients in the PLQ problem.

Appendix A details how this higher—dimensional TILQ problem embeds the PLQ

problem. In particular, the appendix shows how the decision rules F, of the periodic



problem converge in the limit (as & - w) to the periodic sequence

[ Fl,FZ,F3,F4,F1,F2,F3,F4, ] whose distinct elements make wup the limit,

diag [Fl,Fz,F3,F 4] , of the higher—dimensional TILQ decision rule.

Embedding the PLQ problem within a TILQ problem shows that any type of
seasonality that can be modeled with the former can also be modeled with the latter. The
reverse is obviously true. Since the extensive TILQ literature provides many theorems for
analyzing the limiting behavior of TILQ systems, it initially séems convenient to use the
TILQ form over the PLQ form. This would come at a computational cost, however, given
the much higher dimensionality of the TILQ system.

Not surprisingly, this computational burden need not be incurred. The
higher—dimensional TILQ form of a PLQ model is useful not for numerical computation
but rather as a device for extending to PLQ models the TILQ theorems on con;rergence.

(See Appendix B for a summary of some useful periodic versions of TILQ theorems.)

* — — % 3 -
- Fi and [Ai B.F ] - [Ai BiFi] as tl “+mandi=

These theorems tell when Fto +i i tO 4

1, 2, 3, 4. The theorems also tell when the set of matrices { [Ai - BiF’{], i=1,2,3,4} that
govern the reduced—form or closed—loop evolution of the system implies nonexplosive
dn+itl = [Ai “BiFi] Xgnti
£ Antit1 which governs the evolution of the state variables during the ith quarter of the

nth year (fori=1,2,3,4and n = ng, 05 + 1, n5 + 2, ...), can be modeled as periodically

stationary. (That is, the system’s Tth—order covariances depend on 7 and i, but not on n.)

behavior. With nonexplosive behavior, the system X +

Convergent, nonexplosive models of seasonality cah be quantitatively analyzed by
essentially the same means, and with nearly the same ease, as their more standard TILQ

counterparts.?

3. An example: Input demand with seasonal productivity
To highlight the main features of a PLQ model, consider the following stripped—down
but periodic version of Sargent’s (1987, pp. 402-4) LQ representation of the Lucas and



Prescott (1971) investment model. Let there be n identical, price~taking firms seeking to
maximize the present value of their expected profits. Each quarter, the firms face the
time-invariant, downward—sloping industry demand curve

P, =y - oY, +u,, (3)
where Pt is price and Yt = ny,, with Yy the output of the representative firm. The
demand shock u, is generated by the stationary AR(1) process

Uy = pug g+ o (4)
where ¢, is iid as N(O,a%). The representative firm can produce output according to

i = ftkt’ (5)

where k, is the firm’s input (capital) and f is the productivity of capital. Productivity,
assumed to be perfectly periodic (f = t e for all t), is the model’s only source of

seasonality. The firm also incurs costs equal to

k= (8/2) [k 11k, ) (6)
where 1 is the (nonstochastic) rental cost of capital and § penalizes changes in the input
use. Finally, the firm applies the discount factor b (0 < b < 1) to future profits.

As shown by Sargent (1987, p. 402), competitive partial equilibrium for the industry
can be found as the solution to the social planning problem of maximizing the following

objective

E Lzob {aoft+JKt+_] [ lff-i-,]/ 2] b7 T T P g

-1K 4§ [6/(2n)] [KH- j+1—Kt+j] 2}

with respect to decision rules for choosing k, 1 after observing k, and u,. Here, K, =

; (7)

nkt, and KO’ Uy gy Ug, ... are given. Converting this problem into the form of

equation (1) requires driving t; — o and setting
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Tl ]
=bl%K, . .1
x1;0+.) t0+J’ut0+J’ ’
= jlz[K L -K ]
Vigki = O (Kt T Keag)
100
=A=b"2|0 4 of,
001
1
Bt=B=b1/2[0],
0
S i
—afi/2 f/2 (ayf,—1)/2
R, = |f,/2 0 0 |,
-(aoft—r)/2 0 .0

Qt =Q= _[6/(211)]

(82)

(8b)

(8¢c)

(8d)

(8e)

(81)

The solution to this planning problem is computed recursively by applying the

formulas (2) until the F, sequence converges to its periodic limit. These formulas

generate a numerical—not an analytical—solution, so the model must be parameterized.

Consider the following values for

Demand:

Productivity:

Costs:
Other:

The model is thus time-invariant except that productivity is high in the spring.

- -1 p= 2 _
oy = 8,_a1 =1, p=0.95, a§ = 0.5
f, = 2in spring and f, = 1 otherwise
r=4, §=>500
n = 1,000, b = 0.995.

(92)
(9b)
(9¢)
(94)

For the parameter values (9), the coefficients of the F, matrices converge, in the

sense that IFt -F, _4| < 0.00000001 after 20 iterations on equation (2), to the following

seasonal decision rules for time s = t0+j:



11

- -

Winter: b—j/ 2v = |k

s = [kep17K] = 2.76 - (0.90)k +(0.46)u, (10a)
| PR .
Spring: b il v = bks+1_ks‘ = 2.91 — (0.73)1(s+(0.68)us (10b)
. - R
summer: b3/%y = [k +1k| = 287 (0.73)k +(0.66)u, (10¢)
Fall: b2y = [k, | = 2.76 - (0.74)k +(0.60)u,. (10d)

Substituting these decision rules and parameter values into A, B, and F’; and canceling

terms in b gives the following seasonally varying reduced—form or closed-loop system for

the industry:
. Ki1q 0.10 0.46 2.76][ K, 0
Winter: Uyyq| =[0-00 0.95 0.00{ u,| + $t+1 (11a)
|1 | {0.00 0.00 1.00J{ 1| [0 |
. K1 0.27 0.68 2.91}[ K, 0
Spring: W = 0.00 0.95 0.00 u, |+ £t+1 (11b)
1 | (000000 100[1] [0 |
Kt+1 0.27 0.66 2.87 Kt 0 _
Summer: Uppp| =000 0.95 0.00| | uyi + & ¢ (11c)
|1 ] [0.00 0.00 1.00jJ[ 1} |0 ]
Kt+1 0.26 0.60 2.87 Kt 0
Fall: U g = 0.00 0.95 0.00 u |+ €t+1 . (11d)
1 ] [0.00 0.00 1.00j] 1] |0

To illustrate the time—series properties of the reduced—form system, I generated an
initial set of 6,000 quarters of draws of ft.“ These were used, along with the system (11)
and initial values of zero for u, and Kt’ to compute a 6,000—quarter time series for K ¢ and
u,. Under the assumption that the system was oscillating near its steady state after 6,000
periods, the values of K and u in quarter 6,000 were then passed as initial values to
generate an additional 256 quarters of data on Kt’ L P b and Yt‘ Fig. 1 shows that, over
a 128—quarter subsample, the driving process u, is highly persistent and that this

persistence is transmitted to Kt and Yt and transmitted slightly to P,. Figs. 1 and 2
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each show that the three endogenous series also have clear seasonal fluctuations, despite
the absence of seasonal power in the logged periodogram of the AR(1) driving process.?

The seasonality in the endogenous series is anchored to specific seasons. Prices tend
to be lowest and output highest in the spring, when the productivity peak halves (static)
marginal costs. The seasonal pattern in the input use is less obvious, because the higher
productivity in the spring tends to both expand output (by lowering static marginal costs)
and reduce the amount of input needed per unit of output. In this case, the latter effect is
slightly dominant, so capital tends to have a mild seasonal dip in the spring.

In fact, capital tends to dip in the spring as long as its rental cost is below 5!/3
(assuming other parameters remain as specified). At higher rental costs, the average
output price is far enough into the elastic region of the demand curve to give capital, on
average, a springtime peak. In other words, in this model a change in the average level of
a nonseasonal exogenous series can amplify, mute, or even reverse the seasonal pattern in
an endogenous series. This possibility provides a simple economic interpretation for the
phenomenon of changing seasonal patterns, which is often encountered by practitioners of
seasonal adjustment.

The sharp spikes in the logged periodograms of Kt’ Yt’ and P + suggest that, at least
in this simple example, their seasonality might be captured well by seasonal dummies. To
give a sense in which this might be true, I used the 256 data points and ordinary least

squares to estimate the following equation:

- Ky = 011K, + 0.68u, + 343Q, + 268Q, + 3.35Q, + 3.49Q,, (12)

1 0.03)t  (0.02)*  (0.10)° (0.12)2 " (0.12)%  (012)*

where Qi is 1 in the ith quarter and zero otherwise. (The fitted equation has an R2 of
0.97, a Durbin-Watson statistic of 2.38, and a Q-statistic that strongly rejects the
hypothesis of no serial correlation. Standard errors of the coefficients are shown in

parentheses.)
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Note that the coefficients on lagged K, and u, recovered by this regression, though
bounded by the corresponding values in the closed-loop system, lie near the boundary.
Fig. 3 shows that the response of the system defined by (12) to a unit shock in u, captures
fairly well the gross characteristics (average height, early peak, and overall downward
slope) of the seasonal impulse response functions for the system (11). However, the
impulse response of system (12) completely obscures the seasonal oscillations within each
of the four impulse response functions of system (11). For example, the first period of the
impulse response of the time-invariant system is about 50 percent higher than the first
period of the true response to a first—quarter shock. In this example, then, the adequacy
of the approximation (12) to the system (11) depends on whether the seasonal details of
the true impulse responses are important for analyzing a particular problem.

A time-invariant system, however, will not always capture the gross characteristics
of the true seasonal impulse responses as adequately as in this example. In Todd’s (1983)
empirically calibrated agricultural model, impulse responses to a given shock sometimes
differ significantly in average magnitude from month to month or even change signs. No

single time—invariant impulse response can summarize such behavior.

4. Concluding remarks

New models of purely endogenous economic seasonality can be formulated and
analyzed by means of LQ problems with periodic—coefficient matrices. These models can
represent phenomena, such as seasonal shifts in production or utility functions, that are
accommodated in TILQ models only by greatly e:;panding the system’s dimension.
Nonetheless, the PLQ problem can be solved by convenient recursive algorithms. The
limiting properties of its solution, as the horizon goes to infinity, are governed by natural
generalizations of well-known theorems developed for TILQ problems.

One possible application of PLQ models is to examine whether the theoretical

nonseparability of seasonal and nonseasonal dynamics is quantitatively important. As
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noted earlier, TILQ problems have already been used to empirically analyze a variety of
models and hypotheses. In general, these analyses use either annual or seasonally
adjusted data or derive their seasonality from exogenous price series whose seasonality is
unexplained. Repeating these studies with allowance for deterministic sedsonality in
preferences, technologies, and endowments would not greatly increase the quantitative
work load, provided the appropriate data are available. Such an exercise would show how
much is lost in these models because of the assumptions that seasonal movements can be
either ignored, adjusted for, or taken as exogenous. Todd’s (1983) partially calibrated
monthly model of the U.S. corn, soybean, and hog sectors provides an empirical example
in which the responses to policy shocks differ significantly depending on the season in
which the shocks occur.

PLQ models are also potentially useful for interpreting work on periodic—coefficient
time—series models in economics. Time-series models with periodic coefficients have been
studied from time to time [by Pesando (1972), Gersovitz and MacKinnon (1978), Parzen
and Pagano (1979), and Trivedi and Lee (1981)]. Interest in these models may revive as a
result of recent work by Osborn (1988a,b) and her associates [Osborn and Smith (1989),
Birchenhall et al. (1988)]. Their work suggests that periodic—coefficient time—series
models can achieve modest improvements in out—of-sample forecasts for some economic
series. PLQ models supplement periodic—coefficient time—series models by showing

explicitly how these time—series models can arise as equilibrium reduced—form equations.



15

Notes

*I thank Larry Christiano, Warren Weber, and especially Tom Sargent for
encouragement and advice. Careful reviews by two anonymous referees also refined my
understanding of the topics covered here. I take full responsibility for the paper’s defects.
The views expressed herein are my own and not necessarily those of the Federal Reserve
Bank of Minneapolis or the Federal Reserve System.

Problems with a discount factor b can be transformed into problem (1). The

required transformation of variables is accomplished basically by substituting X, = bt/ 2}:t

and absorbing a factor of bl/2 in As(t) and Bs(t)' See

-~

for X, and v, = bt/2vt for vy
Sargent (1981) or the example in Section 3.

*Strictly speaking, stochastic variation in the seasonal coefficients cannot be
accommodated. It might, however, be approximated ieasonably accurately via a PLQ
Taylor—series approximation. -

SInstead of the recursive numerical solution techniques discussed here, some TILQ
applications use calculus—of-variations techniques to derive analytic, or nearly analytic,
solutions. These analytic solutions are useful for qualitative or theoretical analysis
because they show the functional form of the relationships between parameters of agents’
optimization problems (the elements of their R, Q, A, and B matrices) and coefficients in
agents’ decision rules or the reduced—form equations for endogenous variables. Analytic
solutions are also handy for quantitative analysis, for they considerably speed up
computation of the likelihoods or equilibrium time paths associated with a given set of
decision problem parameters. These calculus—of-variations techniques can also be
generalized to a broad class of PLQ problems [see Todd (1982, 1987)).

“The normal random-number generator used here transforms a uniform distribution
into a normal distribution. The uniform distribution is based on the

multiplicative—congruential method discussed by Kennedy and Gentle (1980, pp. 136—47).

The transformation to normal is based on the fast acceptance-rejection algorithm
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discussed by Kinderman and Ramage (1976). The entire procedure was carried out via
the RNDN command of the GAUSS software package, Version 1.49.
The spectra in fig. 2 were computed from data series of length 4,000 that were

generated as described in the text.
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Appendix A

An equivalence between periodic and time-invariant LQ problems

The strategy for extending the TILQ convergence theorems to the PLQ case is to
rewrite the PLQ problem as a TILQ problem with a higher—dimensional state space.
Once this is done, Appendix B shows that well-known time-invariant results have
convenient PLQ versions.

The PLQ problem is obtained from equation (1) by setting s(t) = s(t+p), for all t
and a given integer p that specifies the period of the deterministic cycles in R, Q, A, and
B. In the quarterly framework adopted in this paper, for example, s(t) =m 4(t), where
mp(t) is p if t is evenly divisible by p and is otherwise the integer remainder from dividing
t by p. In addition, assume that the calendar is aligned so that s(t) = 1, 2, 3, and 4 in
quarters 1, 2, 3, and 4, respectively.

To rewrite the periodic version of problem (1), embed its periodic parameter matrices

in some larger but sparse matrices. In particular, let

Q= diag| Qg 1), Qy 5 Q3 Qe = ciog[Q1,25,Q5,Q, ]

R = diag _Rs(l),Rs(z),RS(3),RS(4)] = diag[Rl,Rz,R3,R4],

:
K, =diag[K} K2 K K‘t‘]
LTty

s T T, .T
R [61txt 04Xy 034X Oy

b

T|T
1

where diag[Zl,Zz,...,Zp] denotes a diagonal (or block diagonal) matrix with diagonal
elements Zys Zogy oy Zp; K;1= Ptl, fori =1, 2,3, 4; and 6it =1lifi= m4(t) and 0

otherwise. Thus Q is a 4m x 4m symmetric negative definite matrix, and R and Kt are
1

4n x 4n symmetric negative semidefinite matrices. Also form
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A= per[As(l),As(2),AS(3),AS( 4)] = per [Al,A2,A3,A 4]

B = per [Bs(l)’Bs(2)’B§(3)’Bs(4)] = Pef[BrBz’Bs’Bzi]’

where
0 0 0 Z4
Z10 0 0
per[ZZZZ]:
PT27374 0 Zy 0 0
0 0 Z30_

Finally, for all integers k, let es(t) = [61t1’62t1’53t1’64t1] T, where 5it is defined above and

Iis the n x n identity matrix.

I now show that problem (1) can be reexpressed as choosing feedback rules

. (tl"l)
{ut = _Ltyt} to maximize
=t
0
(t,1)
1 p T T
E, | % {thyt + thut} +yL K, 3, (A.1a)
0| t=t, 1 74

subject to the given values of vy, and K, and to the constraint
0 1

Vipr = Avp + Buy +egyé - (A.1b)

This problem is essentially time-invariant because time-varying parameters appear only
in the matrices es(t)' Due to certainty equivalence, these matrices don’t affect the
optimal feedback matrices Lt or the optimized-value matrices Kt’ A slight
reinterpretation of these results can be added later to allow es(t) to be the 4n x 4n
identity matrix, making the system completely time-invariant. As a result, the solutions
to the finite-horizon problem (1) and the many theorems concerning the limiting behavior
of time-invariant LQ problems can be transferred wholesale to this rewritten version of

the periodic LQ problem.
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Standard LQ methods solve problem (A.l) by first computing a sequence of value

matrices according to

_ T
K,k =R+4A [K(tl—k+1)
(A.2)
T -1,T
Kt x+1)B [Q+B K(1;1—k+1)B] B K(tl—k+1)]A
Showing how this K sequence relates to the P sequence used to solve problem (1) is the
key to showing that problems (1) and (A.1) are equivalent. The following results, which

can be checked directly, simplify the analysis (let all variables in this expression represent

matrices and assume that all matrices to be multiplied are conformable):

T.. T Ty
X4] dlag[Zl,Z2,Z3,Z4] [per Z2X1,Z3 2,Z4X3,Z X

[ per (X1 Xg X3,

I

) A
Tdiag[Zl,Zz,Z3,Z ]] per (XX, Xg.X,] = per zrgxl,zgxz,zrfx3,zT ]

i
per (X} X, X, X ]] per(Y;,Y,,Y,Y, ] =diag X¥Y1,XEY2,X§Y3,X'£Y4]

T .. Ty T+ Ty T
per (X, Xp,X5,X, [per Y ,Y,,Y Y4]] _dlag_X4Y4,x1Y1,X2Y2,X3Y3}

per X}, X, X3, X, [m B (21, 2y 25,2, T=per[xlz}‘,xzzg,x3z§,x4zr£]

1T _ T ,T)|T
diag (2%, 25, [per X, Xp XX, —[per[Xlzl,X 71 X 70 X, 24”

per X} Xy, X3, X,] [diag [212:23%4) | T [per Y Y2,Y3,Y4]]T

. TyT ¢ Ty T y o ToT « T T
=diag[X ELY XTI X250 Y ) X 20V ).

Recall that K, = diag[K% k2 k3 k! ] where Kl = P, . Then we want to
1 1t b Y
th

show that K(t 1) is zero except on the diagonal, where the i it® block i=1,23,4)is
1

given by

iQ1

T 1@1

+K,'B [Q +B] K;i‘-lB] B’ K;CﬂA (A.3)
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where @ is the modular addition operator defined by i @ k = m4(i+k). Furthermore, we
require that the block for i = m4(t1-1) equals the value for P(t 1) determined in the
1
solution to problem (1). In other words, P (t,—1) 2ppears in the m4(’cl—1)St diagonal block
. 1
of K . The other diagonal blocks of K can be thought of as containing
expressions appropriate for the P(t 1) of worlds totally disjoint from ours in which the
1

structure of the economy (Rt’ Qt’ At’ and Bt) is translated forward or backward, relative
to our own, by 1,2, or 3 quarters. [The blocks for these parallel worlds contain no
information useful in our world, but they are necessary here to maintain the
time-invariant nature of problem (A.1), including the convergence of the P {—k Sequence
to a unique limit as k — .] Like P(tl—l)’ K(tl—l) is a symmetric negative semidefinite
matrix [Bertsekas (1976), p. 72].

To show what we need, I build up an expression for K(t X) from the inside out,
i 1

; . T
start th the term B K B.
rting wi rm (tl—k-ijl)

T
B K B

]] dlag[ (b, —k+1) %t k1) K(t k1) %t -k+1)]

= [perB, 2
[ r[Bl,B2,B3,B4]]

. /T T T
[ I[K (t,%+1)B1 (tl—k+1)B2’K(t1—k+1)B3’K(tl—k+1)B4]]

v (T2 Ty T
= diag [BIK(tl—k+1)B1B2 (t;k+1)B2B K(t k+1)B3

BTK(t k+1) 4]
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Then
T . T2 1
[Q+B K(tl—k+1)B] —dlag[[Q1+BlK(t1—k+l)Bl] )

T, 3 -1 T, 4 -1
[Q2+B2K(t1—-k+1)B2] ’[Q3+B3K(t1—k+1)B3] )

T, 1 -1
[Q4+B4K(t1—k+1)B4] ]
Denoting this result as diag [01,92,93,9 4] and noting that Q? = {1, we get

B [Q+BTK(t1_k +1)B] ~1gT

= [per[Bl,B2,B3,B 4]]dia,g [000:0,,] [per[Bl,B2,B3,B 4]]T

. T T T T
= diag [B £2,878,0,8TB,0.8T8.0.8 4].

Then

[K(tl-k+1)+K(t1—k+1)B [Q+BTK(t1—k+1)B] —IBK(tl—k+1)]

s 1 2 3 4
= diag [K(tl—k+1)’K(t1—k+1)’K(tI—k+1)’K(t1—k+1)]

. 1 2 3 4
+ diag [K(t1—k+1)’K(t1—k+1)’K(t1—k+1)’K(t1—k+1)]

T

T
1:BofloB

T
1B B

; diag[B B L

T
B39333]
2

. 1 3 4
x diag [K(tl—k+1)’K(t1—-k+l)’K(tl—k+1)’K(t1—k+1)]

= diag|T'),Ty,l3,Ty),

where

ol 1 T i
1 Rt TR k1) Piesies®i es%(t k1)



22

fori =1, 2, 3, 4, are symmetric matrices.

Then we have

K(tl—k) =R+A" [K(tl—k+l)+K(t1—k+1)B [Q+BTK(t1—k+1)B]
TK(tl—k+ 1)] A
diag[R; RyRy R,) + [per[Al,Az,As‘,A‘i]]deag[I‘l,I‘z,I‘S,I‘4]
[

per(A;,AqnA A]]

diag[R;, Ry Ry Ry + [per[F2A1,I‘3A2,I‘4A3,F1A4]]Tper[Al,Az,A3,A4]

T T T
dlag[[ +ATD ] ,[R2+A2 I‘3A2] , [R3+A3 r 4A3] , [R4+A TrA 4]]

= diag {R1+A}‘[K(t —k+1)+K(t —k+1) 1[Q1+BT (t k+1) ]—1
N S N R

[Q2+B (t,k+1)P ]_lBgK(t —k+1)] }

{R +AT[ (¢ —k+1)+K(t k1) 3[Q3+B§ (t,-k+1) 3] -

B3 K(t k+1)] } {R4+AE[K%tl—k+1)+K%tl—k+1)B4

[Q4+BTK(t —k+1) 4] lBTK(tl—k+1)}A4}

Inspection of this result for the case k = 1 shows that K(t 1) has the structure we
1

require.

Now assume that P(t _k41) appears in the m4(tl—k+1)St diagonal block of
1

K(t k1) that the other diagonal blocks contain symmetric negative semidefinite
1
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matrices, and that the rest of K(t —X+1) is zero. The arguments presented above hold

.th

again and show that K(t %) is zero except on the diagonal, where the i"" block (i=1,z2,
3, 4,) is given by
(t x) =B+ AT[ E?l-k+1)+Ki(t®1-k+1) i
[Q +B{K E?l k+1)Bi ]_1 BTK%?1~1:+1)] (A4)
m, (t;—%k+1)

The block fori = m 4(t1—k), which contains an expression in terms of K (t,k+1) =
1
P(tl—k +1) is equivalent to P(tl—-k) from problem (1). Thus, K(tl—k) is a symmetric

negative semidefinite matrix with zeros everywhere except in its diagonal blocks, and its

m 4(1;1—k)th diagonal block contains P(t )

A subset of the calculations performed in the inductive matching of K(t X) with
P(tl—k) matches L(tl—k) with F(tl—k) in a similar fashif)n. That is, L(tl—k) is zero
except in its diagonal blocks, and the m 4(1;1—k)th diagonal block contains F( £,—k)"

1

Recall that X, occupies the mé(to)th block of the otherwise zero y; - Given the
0 0

structure of L and the definition of e from equation (A.l1b), matrix

multiplication shows the following: u, is zero, except its m 4(t0)th block contains v, ;
0 0

. s st . . . s
yto 11 1s zero, except its m4(t0+1) block contains xto It ut0 41 I8 zero, except its

t

t0+1; and so on.

m4(1;0+1)St block contains v

When es(t) is replaced by the 4n x 4n identity matrix, then X Vi and v, are, in
general, nonzero in all their elements. However, only the blocks of these vectors which are
nonzero in the system with es(t) defined as before are of interest. Furthermore, the
diagonal and periodic structure of the matrices means that the values of these interesting

components are unaffected by whether or not the other components are zero. So we are



24

free to replace es(t) by an identity matrix and to ignore the components of x, y, and v
corresponding to the parallel universes discussed above.

In summary, all of the information obtained by solving the PLQ problem in the
lower—dimensional time-varying form of problem (1) also can be obtained by reading the

appropriate blocks of the solution to a higher—dimensional TILQ problem.
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Appendix B

Convergence theorems for periodic LQ models

- For TILQ problems, economists and systems theorists have extensively studied the

conditions sufficient to guarantee convergence, as k - w, of the value matrix P( $.k) and
1
the feedback rules F(t _x) 2 well as the nonexplosive behavior of the closed-loop system
1

X1 = (A-BF)x; + ¢ 41 [See Bertsekas (1976), Kwakernaak and Sivan (1972), and
Sargent (1981).] These conditions, which greatly facilitate empirical work on dynamic
systems, have been implicitly extended to the PLQ case by the results of Appendix A.
Here, in Appendix B, I show some of the special forms the convergence conditions assume
for PLQ problems. These forms are useful for directly analyzing the properties of PLQ
models without first converting the PLQ models to higher—dimensional TILQ models,
which are less efficient numerically. (Readers are referred to the references cited earlier in
this paragraph for definitions of the concepté used here and for the standard
time-invariant theorems.)

Let’s begin by developing a particular controllability canonical form for PLQ
problems. A first step is to compute the controllability matrix P for the periodic system

(A.1). Matrix multiplication (and reordering of the columns of P, which doesn’t affect the

columns’ span) shows that this can be written as
P = diag [P4,P1,P2,P3] , (B.1)

where

P; = [B ABiez Ai4ie3Piay AitiestieBier AjBy, AA, iBias
“n-1, ,n-1
A Ay A1@3Bl@2’ AIA i @3A1@2B1@1’ e A B A A B1@3’

1

An‘lA A, A 0 1A A.

ia3Piay i3 1@231@1]’

with
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A; = A A a38 008 @1

11

and the modular addition operator @ is defined in Appendix A. In effect, each season has
its own controllability matrix and hence its own controllable subspace, which I denote as
C, (fori =1, 2, 3, 4). It is therefore possible that the system can reach a given state in
one season but not reach it in another.

The decomposition of the controllable subspace into four orthogonal seasonal
components permits the construction of a revealing controllability canonical form for the

PLQ problem. Suppose the dimension of Ci is . For each Ci’ choose 2 basis fi, f; . fir .

1

1 f;+2, . fll1 so that fi, fé, vy fII1 span R®,
i

i Td i
and let Ti = [fri +1fri +2...fn].

and T, = diag[Té,Tg,Tg,Té]. Using T to transform the PLQ problem (A.1) to

and let Tl = [fif%f;l] Choose vectors fii 1

Then form T = T, T,], where T, = diag [Ti,Tf,Tf,T‘ﬂ

controllability canonical form yields

Al A2
| R Al - per[A;J, AL AL AZJ], (B.2a)
0

A=

Aptnxn, Ap? rx(n-ry ), and Af? (n1p )x(n1y ), k = 1,2,3,4;

. Bt : ..

B= [0 , with B! = per [Bll, B21, Bé, Bi] and Bi1 rxm, i =1,2,3,4; (B.2b)

. |RU R2

R=|. . |, withRi= diag[RiJ, riJ, R, R}LJ], (B.2¢)
R2! R22
Rilr wr. RIZ7 x(nor. ) R2l— pi2T
Ry sy, Rpf npx(nr), R =R*,

and

R{? (n-r)x(n1y), k=1,2,3,4.
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This canonical form shows that the stabilizability of the PLQ problem depends on
the stability of A, This can be checked directly, but the following theorem uses the
special structure of A2 to find a sufficient condition for stabilizability that may be easier

to check.

Theorem 1. The matrix A22 is stable provided any one of the matrices Ai =

A22A22 A22 A22 (i _ . :
A Al63Aia2A ¢ (= 1,23, 4) is stable.

Proof. Let A be any nonzero eigenvalue of A%? and partition its eigenvector yasy =

[y}'y’gyrgy’ﬂ T, where Y; is (n—ri)xl, with I the dimension of the ith controllability

subspace. Then A%y = Ay, or
- - r - - -
22 22

0 o o Axlfy, Ay [y

A 22
A{Yy| = (Mg,
22 22

292 A 22
_0 0 A3 0 Yy _A3 y3_ /\y4

By definition, y # 0. Suppose ¥4 = 0. Then Az2y4 = /\y1 = 0, or y; = 0. This, in turn,
implies Y9 =¥3 = 0, or y = 0, a contradiction. So Yy # 0, and by similar reasoning Yio

Yo and yg are also nonzero.

Note that (A?2)% = diag[A4,A1,A2,A3] and that (A2)%y = A%y, Thus A%is an
eigenvalue of (A22)4, still with eigenvector y. Writing out (A22)4y and /\4y shows that

Aviar = Aio1 (= 1,2, 3, 4). Thus, if A is an eigenvalue of A%, then A% is an

eigenvalue of A,, A,, Ag, and A,. If any of these four matrices is stable, then Al <1

and A22 is stable.
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Figure Legends

Fig. 1. 128 observations from a quarterly model with seasonal productivity shifts.

Fig. 2. Estimated logged spectra from a quarterly model with seasonal productivity
shifts.

Fig. 3. Response of input use to a unit shock to the exogenous component of output price:

True seasonal responses ( ) versus response (— — —) from a time-invariant model

estimated with 255 observations from a quarterly model with seasonal productivity shifts.
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