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Abstract

The extent to which there are aggregate returns to scale at the level of aggregate
production has important implications both for the types of shocks generating
business cycles and for optimal policy. However, prior attempts to measure the
extent of these returns using instrumental variable techniques have yielded quite
imprecise estimates. In this article, we show that the production shocks implied
by a range of returns to scale that encompasses both large increasing returns
and large decreasing returns are almost identical. This makes clear that there is
a fundamental reason for the imprecision of prior estimates and casts doubt on
our ability to generate more precise estimates.

The views expressed herein are those of the authors and not necessarily those of the Federal
Reserve Bank of Minneapolis or the Federal Reserve System.



The value of aggregateturns to scale-the percentage returns. Our main finding is that the technology shocks
change in output from a given percentage change in fadnferred from this range of values are nearly identical.
tor inputs—has important implications for the sources off-or this range of values of returns to scale, the correla-
shocks that lead to business cycle fluctuations. With cortion of the shocks is close to one and the shocks have the
stant or decreasing returns to scale, business cycle mosame serial correlation properties and similar variances.
els driven largely by technology shocks are consistentnfortunately, these results have negative implications
with a number of business cycle facts, in particular, withfor how precisely we can measure aggregate returns us-
procyclical labor productivity. In contrast, with constant ing standard measures of inputs and output. The simi-
or decreasing returns to scale, business cycle modelarity of the series suggests that the likelihood functions
driven primarily by monetary shocks are inconsistentresearchers use to estimate returns to scale are insensitive
with procyclical productivity. With constant or decreas-to variation in this parameter and, consequently, that
ing returns to scale, the marginal product of labor is di-measurement of returns to scale will not be precise.
minishing; therefore, an increase in labor input brought To conduct our analysis, we construct a model econ-
about by a monetary shock alone drives down productivemy similar to models used in the literature, derive an
ity. With increasing returns, however, monetary shocksobservational equivalence result, and show how research-
can generate procyclical productivity in otherwise stan-ers have restricted the stochastic process for the shocks
dard models. Moreover, if the value of returns to scale igo identify returns to scale. We then show how restrict-
sufficiently large, equilibria may not be unique, and asing the shock process also implies, in principle, sharp re-
Benhabib and Farmer (1994) show, self-fulfilling beliefs, strictions on the covariance properties of the technology
or animal spirits,alone can generate fluctuations that areshocks. We go on to show that the covariance properties
difficult to distinguish from fluctuations in the standard of the innovations to the technology shock are nearly the
real business cycle model driven by technology shockssame for a wide range of returns to scale values.

In fact, business cycle fluctuations in economies with al'he Model

sufficiently large returns to scale value can be due to viry

tually any shock that moves factor inputs. Thus, our abji" this section, we construct our basic model economy

ity to evaluate the importance of the sources of busin eﬁ?d characterize a set of functions that constitute an equi-

cycle fluctuations depends on the value of aggregate r orium.

turns to scale.

While the value of returns to scale is important for
evaluating the sources of business cycle shocks, meas
ing returns is difficult. First, there is an identification
problem: model economies with any value of returns to ©
scale are observationally equivalent if the unobserve&l) E{ Zr:oB U(C"Ht’dt)}

stochastic process generating the shocks is unrestricted

Second, although researchers have come up with vaﬁfghfgﬁgu';tqi% g'i??ﬁgt;%d%” 'i tgi?: ;t'"tgogmﬁgzzfe din
ous ways of confronting the identification problem to P g'e pny 9 P

measure returns to scale, the resulting estimates oftetﬂe economy, 1 4 s leisure (nonmarket time), and, is

cover a wide range of values, including significant de-2 pﬁ?ﬁgﬁggﬁg?&pﬁu2{%'2,;?%% is given b
creasing and large increasing returns to scale. Moreover, 9 9 y
the estimates often have large standard errors and corrgs,

g nfz) Vit (19k = ¢ +kyy + by — 1+

sponding wide confidence intervals. Consequently, fir
conclusions about the value of returns to scale are hardh dr d he h hold's b ing level
to draw; thus, the importance of various sources of busi '€ andr, denote the household's borrowing leve
ness C);cle sﬁocks are hard to evaluate and the gross interest rate, respectively, graknotes a

In this article, we analyze the measurement of aggrel—ump'Sum tax.

Our basic model is similar to the one used by Benha-
bib and Farmer (1994). Our model has a measure 1 num-
Jer of identical households. The households’ preferences
are given by

gate returns to scale. We first show why there is an iden- Per capita production of the household is given by
tification problem and discuss what assumptions are rz—g) v = AF (kL)Y
quired to solve that problem. We then conduct a simpl

analysis that sheds light on how precisely returns to scale herek and|, denote the household's levels of capital

can be measured. In this analysis, we compare the tecﬁ{n d labor andY, is aggregate per capita oUtBUEol
- - _ t . =
nology shocks inferred from aggregate production funCIowing other work in the literature, we assume that the

tions that are identical except for the value of returns tg oduction functiorE(-) is a linear homogeneous Cobb-
scale. If we can measure returns to scale precisely, th bualas functiod. The term. is the a rg ate technolo-
the technology shocks should be sensitive to changes 9 . t > aggreg

o) shock. The parametgr determines the value of the

the value of returns to scale. With precise measureme Kternalitv and. conseduentlv. anareaate returns to scale
the technology shock inferred from the assumption of des ty and, consequently, aggregate :
he economy is defined asoclassicaif ¢=0.

creasing returns should be different from the technolog For aenerality we allow for different sources of
shock inferred from the assumption of increasing returns., hocks %hat mi nilw’t lead o business cvle fluctuations—
Alternatively, with imprecise measurement, the shock 9 Y

echnology shocks, government spending shocks, prefer-

should be insensitive to changes in the value of returns tence shocks, and shocks to extraneous facsarspots

scale. ' ; . .
. . . We defineg, as a 4 x 1 vector of independent and identi-
We conduct our analysis for values ranging from sig ally distributed random variables, with= {e}.,. We

nificant decreasing returns up to substantial increasin t the periodt realization of the technology shock, the



government spending shock, the preference shock, angimilar roles in the production function: given the inputs,
where relevant, the sunspot variable be given\f§/), K andL, the technology shockultiplicativelyscales the

ay(€"), d(€), andv(e"). Cobb-Douglas function of the inputs, while the returns to
The government’s budget constraint is scale valueexponentiallyraises that scaled function. If
the shock process is left unrestricted, then a new technol-
4 og-t. ogy shock can be constructed that is the product of the

original shock and output raised to the appropriate pow-
The aggregate level of (per capita) output is given by er.

Thus, observed business cycle fluctuations may be

() Y, =[\FEK, LY = [\ KELFOVD due to relatively large technology shocks with constant
returns to scale, as measured by Prescott (1986). How-

wherek, is the period capital stock and., is the period ever, fluctuations may also be due to small technology
t labor input. shocks that are amplified by increasing returns or by
An equilibrium for this economy consists of a set of any shock that, with sufficiently large returns to scale, in-
functions which describe the household's poliay,l{,  creases output and, consequently, productivity. These in-
k.}(€"), the gross interest rate )( €'), and aggregate per clude monetary shocks, government spending shocks,
capita output ¥;}(€") such that the following conditions preference shocks, or sunspots. Without restrictions on the
are satisfied: shock process, the data shed no light on the relative im-

i. Households maximize withd}|, k,,}(') andb,,, = portance of these various sources for business cycle fluc-

0, given f}(€') and F}(&). tations.
ii. The equation of motion for aggregate output is con-Restricting the Shock Process
sistent with households’ production decisions: In this section, we examine two approaches to restricting
the shock process: restricting the order of the process and
6) v,= [)\tk?k%‘e]Y‘f = AF(K,L)] U9 using instrumental variables.
The proposition in the preceding section suggests that
Observational Equivalence returns to scale cannot be identified without restricting

Here we derive an observational equivalence result antfie shock process. To solve this problem, we need an
show the implications of restricting the technology shockidentifying assumption that restricts the shock process.
process. Ideally, identifying assumptions are derived from eco-
Note that in constructing our model, we made no re-nomic theory, because theory makes transparent how
striction on the stochastic process for the technologydentification is achieved and requires no assumptions
shock, A,. The following proposition, which is drawn outside the theory used to construct the model economy.
from Cole and Ohanian 1996 and is similar to results inUnfortunately, there is no generally accepted theory of
Kamihigashi 1996, shows that if this stochastic process ighese unobserved technology shocks that restricts the
left unrestricted, an observational equivalence result ha8hock process. Without identifying assumptions derived

important implications for measuring returns to scale: ~ explicitly from theory, identifying assumptions are
sometimes based on prior knowledge. This approach,

however, is hard to implement because the technology
shock is a latent variable.

If neither theory nor prior knowledge can be used to
rive identifying assumptions, researchers must resort

PROPOSITION.Given@ and a corresponding equilibrium
{cPI?K, ,rPyA(e"), then for anyg, a stochastic process
for the shocks can be constructédg,), such that the
original equilibrium is an equilibrium for the economy 4,

with g andA(&,). to using ad hoc assumptions to achieve identification.
Proof. Define the new stochastic process: However, choosing restrictions that are not derived from

- R economic theory or at least motivated by strong prior
(™) ME) = ME)Y (). knowledge is not entirely satisfactory. Nevertheless, as

' ' o ' the proposition shows, some restrictions on the stochastic
We can easily verify that with this new stochastic pro-process are required to break the observational equiv-

cess for the technology shod, alence.
- R The standard approach, known in the literature as the
8)  MENVE)=NE)Y(E)" instrumental variables approackpnsists of two restric-

tions. First, a particular stochastic process for the shock

This implies that the household's original policy func- is specified. Second, an instrumental variable is chosen.
tions still solve the household's problem and that condi-This variable has two properties: it is assumed to be or-
tion (i) of a competitive equilibrium is satisfied. Given thogonal to theinnovation (the unpredictable compo-
that the household’s maximization condition (i) is satis-nent) to the technology shock, and it is correlated with
fied, the aggregate consistency condition (ii) is satisfiedhe right side variables in the equation, in this case, the
as well. QED. factor inputs. Before we examine the instrumental vari-

Empirically, this proposition indicates that observedables approach, we will first examine the implications of
time series of consumption, investment, output, capitalspecifying a shock process.
and labor input can be generated by this economy Witl?—?esz‘rict/ng the Order . .

any value of retums to scale. The nature of the 0bservayere \ye consider the implications of restricting the order

tional equivalence is that the technology shock and theg v siochastic process. Assume that the stochastic
returns to scale value are both unrestricted and both play



process for the technology shock at any value of returnéll) InQ\) = In(A._) + 1L +&,.
to scale other than the correct value is of oslevheres
is the length of the history of the shocks. Assume also Using lowercase letters as natural logs of variables,
that at the correct value of returns to scale, the stochastize definex, as a weighted sum of the logged inputs:
process theoretically will be of the order specified by the
researcher. This is usually an order much lower tharfl2) x =[6k + (1-9)I].
s—typically, a process of order 1 or 2 is chosen. Before
we describe how this restriction is useful for understand- Given this specification and abstracting from a con-
ing imprecise measurement, we will first illustrate how stant term, we have that the innovation to the log of the
this restriction on the order of the stochastic processechnology shock is given by
arises.
To understand this restriction, assume that the shockd3) g = Ay, — WAX,
follow a first-order log-linear Markov process. Now con-
sider our model withp = ¢ # 0. Define the shock vector wherey = 1/(1-¢) ande, = Yg,.
K = [A; g 6, v]. The conditional probability distribution Estimating returns to scaley by ordinary least
of 1, is given byF(u;H._,). A Markov equilibrium for  squares is not appropriate because standard business cy-
this economy, conditional on, is given by a set of cle models imply that the innovation and the inputs will
functions £% 17,k }(s.K) and {¥,Y?}(s), where the be correlated. In particular, a positive technology shock
state vectos = (1,K)). R will increase the marginal product of labor and lead
Now consider an alternative, neoclassigg@) econ- households to increase labor input. (See, for example,
omy. Given a Markov equilibrium for thegf economy Prescott 1986 and McGrattan 1994.) To see this, note
with the restricted shock process, we can't construct athat the estimate af, ), is the solution to
equivalent Markov specification for the shock process
for the neoclassical economy. (14) ZAXt(Ayt—lIJAXt) =0
To see this, defin@, = [A, g, d, v]. Define G(f4,,5-,)
as the probability distribution over."We can take

©)  G(fsy) = Fl(Msby)

which implies that
15) 9= xay/Yexr=w+[xe /Y]

The instrumental variables approach assumes that we

fori =2, 3. Next define can find an instrumental variabte, that is uncorrelated
~ N with the innovation to the technology shock, but is corre-
(10)  A(Ps) =AYAHS-)- lated with the inputs. Given an instrument, we can use

, ) _ this identifying assumption to estimaje We do this by
We can't construct an equivalent Markov equilibrium choosing the value of returns to scale that sets the sam-

because the shock process in tieeconomy is a first-  ple covariance betweenand the innovation to zero:
order Markov process, but the constructed shock process

in the neoclassical economy depends on the level of ouf1g) Y z(ay~wax) =0

put. Because output depends on labor and capital and =~ "

because capital is a function of all past shocks, we cakhich implies that

show that the constructed shock process will not be -

first-order process, as was the original shock process, bt nob= ZZ‘Ayt / ZZ‘AX"

rather will be a process of orderwheres is the length . ; .

of the history of the shocks. The difference between th(%T,\Ijus, the instrumental variables estimate of returns to

order of these shock brocesses is the kev implication cale is obtained by setting the sample covariance be-
this restriction P : y implicat een the instrument and output divided by the sample

covariance between the instrument and the weighted sum
... And Using Instrumental Variables of the inputs to zero. This condition is often called an
With the instrumental variables approach, returns teorthogonality condition (Note that the ordinary least
scale can be measured by choosing a value such that thguares estimate is a special case of the instrumental vari-
covariance between the innovation to the technologybles estimate in which the instrument and the right side
shock and the instrument is zero. We use an instrumeivariable are the same.)

because theory implies that at least some of the inpurﬁ]vestigating Imprecise Measurement

are not orthogonal to the innovation to the technologyln this section, we investigate why returns to scale mea-

shock; con_sequently, Some _other_vanable must be ch surement is imprecise, and we evaluate our empirical re-
sen as an instrument. Burnside, Eichenbaum, and Rebe Olts

(1995) discuss of some of the instruments that have been

used. . . .. _confidence intervals are common in measuring aggregate

To understand the instrumental variables estimation . s to scale. For example, Burnside, Eichenbaum, and
formally, consider estimating returns to scale in our mod—Rebelo (1995 p 93), using étandard rﬁeasures of ir;puts
el economy with an instrumental variable. To do this, we g output r,ep;)rt a’ standard error for economywide
need to make an assumpnon.for t_h(_e stochastic process turns to écale of 0.34. With this standard error and a
the technology shock\(). For simplicity, we assume that

the process is exogenous and that it is a loo-random wal oint estimate of returns to scale of 0.98, a 95 percent
withpdrift' 9 9 nfidence interval for returns to scale ranges from about

Large standard errors and, as a consequence, wide



0.3 up to about 1.66. Baxter and King (1991) estimate22) E(ee ) =0

aggregate returns to scale of 1.53 with a standard error of

0.56, which yields a 95 percent confidence interval fromfor all j # 0.

about 0.4 to about 2.65. These estimates show that the If the considered value is not near the true value,

value of aggregate returns is measured imprecisely. Ithen, as we have already noted, the constructed innova-

what follows, we will investigate why. tion € will differ from the true innovation and, conse-
Our investigation exploits the fact that the constructedquently, will not be a white noise process:

technology shock is a function of returns to scale. If re- N

turns to scale measurement is precise, the shocks wil3) E(g€_)#0

differ considerably depending on the value of returns to R R

scale: the shock processes will look different, their seriafor all j < s. This is becaus8Ak, + (1-8)Al, will depend

correlation properties will be different, and their vari- on the history of the shocks through the effect of the lev-

ances will be different. If returns to scale measurement il of k, on investment and labor effort decisions.

imprecise, however, then the shocks will be insensitive

to variations in returns to scale. In this case, for variou mpirical Results

values of returns to scale, the shock processes will loo 0 _evaluate the differences in the technology shock at
various values of returns to scale, we use annual U.S.

similar, their serial correlation properties will be similar,

and their variances will be similar. Consequently, detect—dgﬁ):rggtéggg (tngsggg' tggzdgt%gr%wnggit%ijrl?:go?f

ing changes in the shocks for various values of returns tJJ . . . Uep : -
consist of gross domestic product (GDP), adjusted for in-

scale will be more difficult. flation, minus compensation of government workéas;
Our analysis consists of restricting the order of the ' P 9 ;

stochastic process of the technology shock, inferring thgor input,defined as private hours worked from the BLS

innovations to the shock process for various values O§5tabllshment survey; and the stock of private capital.

returns to scale, and comparing the shocks and their Stsh((e)cr.ll(e(ler? ;;rvﬁqlgzefloihtirs]e ggﬂg@?ggré%nsg%g tt:?:a i
chastic properties. We then ask, How similar are the in: y ' P P P

novations to the technology shock for different values of&l S Share of income. We use 0.35, which is the ratio of
returns to scale? capital income(corporate profits, depreciation, rental in-

We conduct the analysis under the widely used ascome of persons, and net interest) to real GDP minus in-

. : direct business taxes and minus proprietor’s income.
sumption that the technology shock procegyié a log- : o : .
random walk with drift {): The first part of our analysis is a simple visual com-

parison of the constructed innovations to the technology
(18) InQ)=In(\p) +y+E shock from various returns to scale values. The accom-
=In(\_ .
When we defingy as the natural log of outpuk, as

panying chart shows the constructed innovations to the
technology shock for significant decreasing returns (0.8),

the natural log of the capital stock, ahés the natural

log of labor input, we can infer the innovation to the

constant returns (1.0), and relatively large increasing re-
turns (1.2). The most striking aspect of this chart is the
shock for any returns to scale value as follows. C:Aonside?'m'llarlty Otf the ]:[hreehsetrllqes. ’T*;maﬂy.f’o!”ts’ all thrf{eet::et
a vale or rebms b scale, dentedipywherey/ = Y O 0 o1 Soh oher, T smiarty suggees
1/(1—). Next construct the difference between outputtive o thegvalue of returns o scalegy
growth and a weighted sum of the growth of inputs that g
has been scaled hy: ~ We turn next to formally assessing what our assump-
tion that the shock process follows a random walk with
drift can tell us about returns to scale. We start by asking
for which values of returns to scale the innovations ap-
h. pear to be white noise. We then calculate the autocorre-
lations of the innovations for the following values of re-
turns to scale: {0.8, 0.9, 1.0, 1.1, 1.2}. Table 1 shows the
standard deviationa) and the first six autocorrelations
20) d=n -7 of each innovation series. The sample autocorrelation at
vt lag k is defined as the sample covariance between the

i — )i [ tions with displacemeit divided by the product
whereé = 's,. When we denote the true value fby nnova o g
", we see that the relationship between the constructe%I the standard deviations of these tefms:

(19) ni=4y, - Y[6Ak + (1-0)Al].

With the log-random walk assumption for the tec
nology shock, demeaning yields the innovation to the
shock:

ir?(?\?z;/t?(;[ir?r(;{ )t(i)sthe technology shock)(and the true in- (24) Ze(et—k / (T=K)

- A The standard error for each of these autocorrelations is
whereAk andAl, are the demeaned values of the per-q o7
centage change in capital and labor, respectively. The autocorrelations in Table 1 appear to be both fair-

H If the vallue c%ngdireql forl_r%tqrns o S‘?ali’ IS |3e€r ly low, which we would expect if the innovations were
the true value, then the implied innovatienshould be ite oise, and quite similar. To formally test for white

_S|m|Ia|r o t?f true_lrénovatlon.and should also be approXygise e use the Ljung-Box test. Under the null hypoth-
Imately awhite noISe process: esis of white noise, this statistic is distributed ¢ @an-



dom variable with degrees of freedom equal to the nummany values of returns to scale are about equally likely,
ber of autocorrelations being examined. Using 12 autogiven the data.
correlations, we fail to reject the hypothesis of white This flat slope of the orthogonality condition is im-
noise for each of these series. The values for the test stportant, because it can make ruling out all but extreme
tistic for these five values are 7.53, 7.30, 6.94, 6.48, anglalues of returns to scale difficult. To see this formally,
6.07. These values are all below the critical value ofconsider the sample variance of the instrumental vari-
21.55 for a 5 percent test. This implies that we can't usables estimate of returns to scale. When the variance of
our assumption that the shock process is a random watke innovation to the technology shock is denotearBy
with drift to infer the value of returns to scale. the variance of the estimate of returns to scra\f;ejs
Instrumental variables estimation takes advantage of )
both a restriction on the stochastic process and an of25) o; = 6°) AX? / (X zax)”
thogonality assumption. However, if the innovations are
too similar at various values of returns to scale, theriThe variance of the estimate depends on two compo-
finding appropriate instruments is likely to prove diffi- nents: the variance of the innovation and the sample
cult. To shed more light on the similarities between in-variance of the inputs relative to the squared covariance
novations to the technology shock at various values obetween the inputs and the instrument. To understand
returns to scale, we calculate the correlations betweedearly how the slope of the orthogonality condition re-
these series for these returns to scale values. Table [&tes to the variance of the estimator, consider the case
shows these correlations. We find that all these series afer the lowest possible variance for the instrumental vari-
highly correlated. For example, the correlation betweerables estimator of returns to scale. This is the case in
the innovations for constant returns and aggregate returnghich the correlation of the instruments with the inputs
of 1.2 is 0.97. Moreover, we find a strong similarity evenapproaches one. In this case, the orthogonality condition
for large differences in returns to scale: the correlation bef16) used to estimate returns to scale becomes
tween the innovations at 0.8 and 1.2 is about 6.90.
The message that emerges from these simple compd6) ZAxt(Ayt—qJAxt) =0.
isons is that not only is a white noise process supported
over a wide range of returns to scale values, but the inThe variance of this estimate of returns to scale ap-
novations to the technology shock are insensitive to th@roaches the following ratio:
value of returns to scale. These data show the problem
with measuring returns to scale precisely: the innova{27) olf,:oz/ Y axe
tions to the technology shocks are virtually the same
over a wide range of values. The shocks have similairhis simpler measure of the variance depends on just the
variances and autocorrelations, and all the innovationgnovation variance and the variance of the inputs. To
are highly correlated. Because our model implies that theee how the variance is related to the slope of the orthog-
log of any constructed technology shock process is equalnality condition, differentiate the orthogonality condi-
to the log of the original shock process plus the scaledion (26) with respect to the returns to scale value to get
log of output, the similarity of these series suggests thaan estimate of the slope:
the shock and output are highly correlated. Thus, the the-
oretical difference that arises between the shock prof28) GZAxt(Ayt—qJAxt)lan: —ZAX%.
cesses from the inclusion of capital is not quantitatively
important. This derivative measures how the covariance changes
From an applied perspective, the fact that the residuas the returns to scale value changes. If the slope is
als from the production function are so insensitive toflat—that is, if the covariance is insensitive to changes in
changes in returns to scale values is bad news for me#he returns to scale value—theBAx? is small. The key
suring returns to scale precisely. To understand this inimplication of this derivative for the variance of the in-
tuitively, consider the high correlations between thestrumental variables estimate is that the derivative is the
innovations shown in Table 2. If returns to scale weredenominator of the variance. Thus, if the slope of the or-
unidentified, then the correlation between the innovathogonality condition is flat, then the slope is near zero,
tions at various values of returns to scale would be exand the variance of returns to scale will be large. Thus,
actly one, and the covariance between the instrumerdn important reason for imprecise measurement of re-
and the innovation would be identical for all values of turns to scale is that there is insufficient variation in the
returns to scale. Now consider what happens as thmputs. This feature of the data has negative implications
correlation between the innovations approaches one. Afor measuring aggregate returns to scale more precisely.
though returns to scale can be identified theoretically i
this case, returns will be hard to measure precisely, par:

ey i smal sample, because he nmovatons ard© AL o 2005 et 0 s e ey piea
highly correlated at various values of returns to scale

then the sample covariance between the instrument arﬂ]ess cycle fluctuations. Many economists have measured

the innovation at these values can also be similar. Thu j_?turns to scale with instrumental variables techniques.

the covariance between the instrument and the innov s'ig\évri\ée&é 'Sér?gg ?ngntig?i:gn;ggscgﬁélg;% t\);itl?)fg;:—
tion can bdflat; that is, the covariance changes very little g

: inputs. A lot of economic research has been devoted
as the returns to scale value changes. This suggests tI%{finding instruments that have these two properties. In

this article, we analyze a more basic problem with mea-

onclusion



_Sunng returns to scale: InSUﬁICIent_ Vanatl_on in the factor 2The assumption that the aggregate externality depends on the level of per capita
inputs. We have shown that residuals inferred from autput, rather than aggregate output, is motivated by the observation that large coun-
standard aggreg ate pI’OdUCtiOI”I function over a Widé’ies do not seem to be systematically more productive than small countries.
S .. %o Its do not depend on the Cobb-Douglas functional form; we only re-
range of return to scale values are nearly identical. Thi§yre mar be homogonsots. o o o e Gy e
problem is independent of the characteristics of the iN-  “The random variable, is a white noise processi,g, ) = 0 for allk, k# 0.
struments. Consequently, the likelihood function in this  ®our results are not sensitive to small changes in
range of values is flat, and the standard error is large. § 6N0t§ chartt ;he autoiﬁrrelatior;st,etf arg t&: sangej as tl:r?se fily beca:ﬁswb
. - PR . drops out. Furthermore, the correlations betweeande! are the same as those be-
_Ou_r conclusion is not optimistic: given observeq Vari- eeng ande! for the same reason. k
ation in standard measures of inputs, we don't think We  ?we also conducted this analysis using quarterly measures of GDP and labor in-
can measure aggregate returns to scale precisely Pe and constructing a quarterly measure of the capital stock. To do this, we used the
. . .~ 77" annual measures of the capital stock compiled by the Bureau of Economic Analysis
measure returns more precisely, our analysis indicates e u.s. Department of Commerce and the quarterly investment flows from the

that more variation is needed in the inputs_ Some econ@aeational income and product accounts. Given these data, we solved for the annual de-
. . . .. jpreciation rate of capital such that the sequence of stocks was consistent with the
mists have argued that the mputs, pamCUIarIy Capltalquarterly flows. We used the derived depreciation rate plus the quarterly investment

vary more over the business cycle than is observed in theri_es to construct a quarterly measure of the capital stock. The correlations between
standard measures of factor services. Applications of thige innovations based on the quarterly data were even higher than those for the annu-
idea include those of Burnside, Eichenbaum, and Rebelo
(1995), who measure returns to scale in overall manufac-
turing using alternative input measures for capital, an
Basu (1996), who measures returns to scale at the tw eferences
digit level in manufacturing using variations in materials
in a gross output production function. While this interest-
ing work may advance our ability to measure aggregate
retqrns to .Scale preC|_ser3 measuring retu_rns to scale ggésu, Susanto. 1996. Procyclical productivity: Increasing returns or cyclical utiliza-
nerically with alternative input measures is a tall order.  tion?Quarterly Journal of Economickl1 (August): 719-51.
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A Look at the Insensitivity of Technology Shocks to the Value of Returns to Scale

Technology Shock Innovations for Various Values of Returns to Scale;
Based on Stochastic Process for Technology Shocks and Annual U.S. Data for 1949-98
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Tables 1-2

Assessing Returns to Scale Using Statistical Properties
of Technology Shock Innovations

Table 1 Autocorrelations of Innovations: Low and Similar

Value at Returns to Scale of

8 9 1.0 11 1.2

Autocorrelation
p (1) -067 -061 -051 —-036 -015

0 (2) —028 —021 -020 —029 —048
0 (3) ~109 —104 -098 —092 —086
o (4) ~016 -002 016 038 064
o (5) 136 149 161 172 183
o (6) S22 12 =112 112

Standard
Deviation (o) 016 015 014 014 013

Table 2 Correlations Between Innovations: High

Value at Returns to Scale of

Returns
to Scale 8 9 1.0 11 1.2
8 1.000 995 979 949 902
9 995 1000 994 975 939
1.0 979 994 1000 993 970
11 949 975 993 1.000 992

1.2 902 939 970 992  1.000




