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Abstract

The extent to which there are aggregate returns to scale at the level of aggregate
production has important implications both for the types of shocks generating
business cycles and for optimal policy. However, prior attempts to measure the
extent of these returns using instrumental variable techniques have yielded quite
imprecise estimates. In this article, we show that the production shocks implied
by a range of returns to scale that encompasses both large increasing returns
and large decreasing returns are almost identical. This makes clear that there is
a fundamental reason for the imprecision of prior estimates and casts doubt on
our ability to generate more precise estimates.

The views expressed herein are those of the authors and not necessarily those of the Federal
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The value of aggregatereturns to scale—the percentage
change in output from a given percentage change in fac-
tor inputs—has important implications for the sources of
shocks that lead to business cycle fluctuations. With con-
stant or decreasing returns to scale, business cycle mod-
els driven largely by technology shocks are consistent
with a number of business cycle facts, in particular, with
procyclical labor productivity. In contrast, with constant
or decreasing returns to scale, business cycle models
driven primarily by monetary shocks are inconsistent
with procyclical productivity. With constant or decreas-
ing returns to scale, the marginal product of labor is di-
minishing; therefore, an increase in labor input brought
about by a monetary shock alone drives down productiv-
ity. With increasing returns, however, monetary shocks
can generate procyclical productivity in otherwise stan-
dard models. Moreover, if the value of returns to scale is
sufficiently large, equilibria may not be unique, and as
Benhabib and Farmer (1994) show, self-fulfilling beliefs,
or animal spirits,alone can generate fluctuations that are
difficult to distinguish from fluctuations in the standard
real business cycle model driven by technology shocks.
In fact, business cycle fluctuations in economies with a
sufficiently large returns to scale value can be due to vir-
tually any shock that moves factor inputs. Thus, our abil-
ity to evaluate the importance of the sources of business
cycle fluctuations depends on the value of aggregate re-
turns to scale.

While the value of returns to scale is important for
evaluating the sources of business cycle shocks, measur-
ing returns is difficult. First, there is an identification
problem: model economies with any value of returns to
scale are observationally equivalent if the unobserved
stochastic process generating the shocks is unrestricted.
Second, although researchers have come up with vari-
ous ways of confronting the identification problem to
measure returns to scale, the resulting estimates often
cover a wide range of values, including significant de-
creasing and large increasing returns to scale. Moreover,
the estimates often have large standard errors and corre-
sponding wide confidence intervals. Consequently, firm
conclusions about the value of returns to scale are hard
to draw; thus, the importance of various sources of busi-
ness cycle shocks are hard to evaluate.

In this article, we analyze the measurement of aggre-
gate returns to scale. We first show why there is an iden-
tification problem and discuss what assumptions are re-
quired to solve that problem. We then conduct a simple
analysis that sheds light on how precisely returns to scale
can be measured. In this analysis, we compare the tech-
nology shocks inferred from aggregate production func-
tions that are identical except for the value of returns to
scale. If we can measure returns to scale precisely, then
the technology shocks should be sensitive to changes in
the value of returns to scale. With precise measurement,
the technology shock inferred from the assumption of de-
creasing returns should be different from the technology
shock inferred from the assumption of increasing returns.
Alternatively, with imprecise measurement, the shocks
should be insensitive to changes in the value of returns to
scale.

We conduct our analysis for values ranging from sig-
nificant decreasing returns up to substantial increasing

returns. Our main finding is that the technology shocks
inferred from this range of values are nearly identical.
For this range of values of returns to scale, the correla-
tion of the shocks is close to one and the shocks have the
same serial correlation properties and similar variances.
Unfortunately, these results have negative implications
for how precisely we can measure aggregate returns us-
ing standard measures of inputs and output. The simi-
larity of the series suggests that the likelihood functions
researchers use to estimate returns to scale are insensitive
to variation in this parameter and, consequently, that
measurement of returns to scale will not be precise.

To conduct our analysis, we construct a model econ-
omy similar to models used in the literature, derive an
observational equivalence result, and show how research-
ers have restricted the stochastic process for the shocks
to identify returns to scale. We then show how restrict-
ing the shock process also implies, in principle, sharp re-
strictions on the covariance properties of the technology
shocks. We go on to show that the covariance properties
of the innovations to the technology shock are nearly the
same for a wide range of returns to scale values.

The Model
In this section, we construct our basic model economy
and characterize a set of functions that constitute an equi-
librium.

Our basic model is similar to the one used by Benha-
bib and Farmer (1994). Our model has a measure 1 num-
ber of identical households. The households’ preferences
are given by

(1) E{ ∞

t=0
βtu(ct,1−lt,dt)}

whereβ is the discount factor,u is the utility function,ct
is consumption of the single physical good produced in
the economy, 1 −lt is leisure(nonmarket time), anddt is
apreference(home production) shock.1

The household’s budget constraint is given by

(2) yt + (1−δ)kt = ct + kt+1 + bt+1 − rtbt + τt

wherebt and rt denote the household’s borrowing level
and the gross interest rate, respectively, andτt denotes a
lump-sum tax.

Per capita production of the household is given by

(3) yt = λtF(kt,lt)Y
φ
t

wherekt and lt denote the household’s levels of capital
and labor andYt is aggregate per capita output.2 Fol-
lowing other work in the literature, we assume that the
production functionF( ) is a linear homogeneous Cobb-
Douglas function.3 The termλt is the aggregate technolo-
gy shock. The parameterφ determines the value of the
externality and, consequently, aggregate returns to scale.
The economy is defined asneoclassicalif φ = 0.

For generality, we allow for different sources of
shocks that might lead to business cycle fluctuations—
technology shocks, government spending shocks, prefer-
ence shocks, and shocks to extraneous factors (sunspots).
We defineεt as a 4 × 1 vector of independent and identi-
cally distributed random variables, withεt ≡ {εs}

t
s=0. We

let the periodt realization of the technology shock, the



government spending shock, the preference shock, and,
where relevant, the sunspot variable be given byλt(ε

t),
gt(ε

t), dt(ε
t), andvt(ε

t).
The government’s budget constraint is

(4) gt = τt.

The aggregate level of (per capita) output is given by

(5) Yt = [λtF(Kt,Lt)]
1/(1−φ) = [λt K

θ
t L

1
t
−θ]1/(1−θ)

whereKt is the periodt capital stock andLt is the period
t labor input.

An equilibrium for this economy consists of a set of
functions which describe the household’s policy {ct,lt,
kt+1}(εt), the gross interest rate {rt}(εt), and aggregate per
capita output {Yt}(εt) such that the following conditions
are satisfied:

i. Households maximize with {ct,lt,kt+1}(εt) andbt+1 =
0, given {rt}(εt) and {ỹt}(εt).

ii. The equation of motion for aggregate output is con-
sistent with households’ production decisions:

(6) yt = [λtk
θ
tk

1
t
−θ]Yφ

t = [λtF(Kt,Lt)]
1/(1−φ).

Observational Equivalence
Here we derive an observational equivalence result and
show the implications of restricting the technology shock
process.

Note that in constructing our model, we made no re-
striction on the stochastic process for the technology
shock, λt. The following proposition, which is drawn
from Cole and Ohanian 1996 and is similar to results in
Kamihigashi 1996, shows that if this stochastic process is
left unrestricted, an observational equivalence result has
important implications for measuring returns to scale:

PROPOSITION.Givenφ and a corresponding equilibrium
{cφ

t,l
φ
t,k

φ
t+1,r

φ
t,y

φ
t}(εt), then for anyφ̂, a stochastic process

for the shocks can be constructed,λ̂t(εt), such that the
original equilibrium is an equilibrium for the economy
with φ̂ andλ̂t(εt).
Proof.Define the new stochastic process:

(7) λ̂t(ε
t) = λt(ε

t)Yt(ε
t)(φ−φ̂).

We can easily verify that with this new stochastic pro-
cess for the technology shock,λ̂t,

(8) λ̂t(ε
t)Yt(ε

t)φ̂ = λt(ε
t)Yt(ε

t)φ.

This implies that the household’s original policy func-
tions still solve the household’s problem and that condi-
tion (i) of a competitive equilibrium is satisfied. Given
that the household’s maximization condition (i) is satis-
fied, the aggregate consistency condition (ii) is satisfied
as well. Q.E.D.

Empirically, this proposition indicates that observed
time series of consumption, investment, output, capital,
and labor input can be generated by this economy with
any value of returns to scale. The nature of the observa-
tional equivalence is that the technology shock and the
returns to scale value are both unrestricted and both play

similar roles in the production function: given the inputs,
K andL, the technology shockmultiplicativelyscales the
Cobb-Douglas function of the inputs, while the returns to
scale valueexponentiallyraises that scaled function. If
the shock process is left unrestricted, then a new technol-
ogy shock can be constructed that is the product of the
original shock and output raised to the appropriate pow-
er.

Thus, observed business cycle fluctuations may be
due to relatively large technology shocks with constant
returns to scale, as measured by Prescott (1986). How-
ever, fluctuations may also be due to small technology
shocks that are amplified by increasing returns or by
any shock that, with sufficiently large returns to scale, in-
creases output and, consequently, productivity. These in-
clude monetary shocks, government spending shocks,
preference shocks, or sunspots. Without restrictions on the
shock process, the data shed no light on the relative im-
portance of these various sources for business cycle fluc-
tuations.

Restricting the Shock Process
In this section, we examine two approaches to restricting
the shock process: restricting the order of the process and
using instrumental variables.

The proposition in the preceding section suggests that
returns to scale cannot be identified without restricting
the shock process. To solve this problem, we need an
identifying assumption that restricts the shock process.
Ideally, identifying assumptions are derived from eco-
nomic theory, because theory makes transparent how
identification is achieved and requires no assumptions
outside the theory used to construct the model economy.
Unfortunately, there is no generally accepted theory of
these unobserved technology shocks that restricts the
shock process. Without identifying assumptions derived
explicitly from theory, identifying assumptions are
sometimes based on prior knowledge. This approach,
however, is hard to implement because the technology
shock is a latent variable.

If neither theory nor prior knowledge can be used to
derive identifying assumptions, researchers must resort
to using ad hoc assumptions to achieve identification.
However, choosing restrictions that are not derived from
economic theory or at least motivated by strong prior
knowledge is not entirely satisfactory. Nevertheless, as
the proposition shows, some restrictions on the stochastic
process are required to break the observational equiv-
alence.

The standard approach, known in the literature as the
instrumental variables approach,consists of two restric-
tions. First, a particular stochastic process for the shock
is specified. Second, an instrumental variable is chosen.
This variable has two properties: it is assumed to be or-
thogonal to theinnovation (the unpredictable compo-
nent) to the technology shock, and it is correlated with
the right side variables in the equation, in this case, the
factor inputs. Before we examine the instrumental vari-
ables approach, we will first examine the implications of
specifying a shock process.

Restricting the Order . . .
Here we consider the implications of restricting the order
of the stochastic process. Assume that the stochastic



process for the technology shock at any value of returns
to scale other than the correct value is of orders,wheres
is the length of the history of the shocks. Assume also
that at the correct value of returns to scale, the stochastic
process theoretically will be of the order specified by the
researcher. This is usually an order much lower than
s—typically, a process of order 1 or 2 is chosen. Before
we describe how this restriction is useful for understand-
ing imprecise measurement, we will first illustrate how
this restriction on the order of the stochastic process
arises.

To understand this restriction, assume that the shocks
follow a first-order log-linear Markov process. Now con-
sider our model withφ = φ* ≠ 0. Define the shock vector
µt ≡ [λt gt dt νt]. The conditional probability distribution
of µt is given byF(µt;µt−1). A Markov equilibrium for
this economy, conditional onφ*, is given by a set of
functions {cφ*,lφ*,kφ

t+1}(st,k) and {rφ*,Yφ*}(st), where the
state vectorst ≡ (µt,Kt).

Now consider an alternative, neoclassical (φ̂=0) econ-
omy. Given a Markov equilibrium for theφ* economy
with the restricted shock process, we can’t construct an
equivalent Markov specification for the shock process
for the neoclassical economy.

To see this, define ˆµt ≡ [λ̂t gt dt νt]. DefineG(µ̂t,st−1)
as the probability distribution over ˆµt. We can take

(9) Gi(µ̂t;st−1) = Fi(µt;µt−1)

for i = 2, 3. Next define

(10) λ(µ̂,st−1) = λ̂tY
φ(µ,st−1).

We can’t construct an equivalent Markov equilibrium
because the shock process in theφ* economy is a first-
order Markov process, but the constructed shock process
in the neoclassical economy depends on the level of out-
put. Because output depends on labor and capital and
because capital is a function of all past shocks, we can
show that the constructed shock process will not be a
first-order process, as was the original shock process, but
rather will be a process of orders, wheres is the length
of the history of the shocks. The difference between the
order of these shock processes is the key implication of
this restriction.

. . . And Using Instrumental Variables
With the instrumental variables approach, returns to
scale can be measured by choosing a value such that the
covariance between the innovation to the technology
shock and the instrument is zero. We use an instrument
because theory implies that at least some of the inputs
are not orthogonal to the innovation to the technology
shock; consequently, some other variable must be cho-
sen as an instrument. Burnside, Eichenbaum, and Rebelo
(1995) discuss of some of the instruments that have been
used.

To understand the instrumental variables estimation
formally, consider estimating returns to scale in our mod-
el economy with an instrumental variable. To do this, we
need to make an assumption for the stochastic process of
the technology shock (λt). For simplicity, we assume that
the process is exogenous and that it is a log-random walk
with drift:

(11) ln(λt) = ln(λt−1) + µ +εt.

Using lowercase letters as natural logs of variables,
we definext as a weighted sum of the logged inputs:

(12) xt ≡ [θkt + (1−θ)lt].

Given this specification and abstracting from a con-
stant term, we have that the innovation to the log of the
technology shock is given by

(13) et = ∆yt − ψ∆xt

whereψ ≡ 1/(1−φ) andet = ψεt.
Estimating returns to scaleψ by ordinary least

squares is not appropriate because standard business cy-
cle models imply that the innovation and the inputs will
be correlated. In particular, a positive technology shock
will increase the marginal product of labor and lead
households to increase labor input. (See, for example,
Prescott 1986 and McGrattan 1994.) To see this, note
that the estimate ofψ, ψ̂, is the solution to

(14) ∆xt(∆yt−ψ̂∆xt) = 0

which implies that

(15) ψ̂ = xt∆yt (∆xt)
2 = ψ + [ xtet (∆xt)

2].

The instrumental variables approach assumes that we
can find an instrumental variable,zt, that is uncorrelated
with the innovation to the technology shock, but is corre-
lated with the inputs. Given an instrument, we can use
this identifying assumption to estimate ˆψ. We do this by
choosing the value of returns to scale that sets the sam-
ple covariance betweenzt and the innovation to zero:

(16) zt(∆yt−ψ∆xt) = 0

which implies that

(17) ψ̂ = zt∆yt zt∆xt.

Thus, the instrumental variables estimate of returns to
scale is obtained by setting the sample covariance be-
tween the instrument and output divided by the sample
covariance between the instrument and the weighted sum
of the inputs to zero. This condition is often called an
orthogonality condition. (Note that the ordinary least
squares estimate is a special case of the instrumental vari-
ables estimate in which the instrument and the right side
variable are the same.)

Investigating Imprecise Measurement
In this section, we investigate why returns to scale mea-
surement is imprecise, and we evaluate our empirical re-
sults.

Large standard errors and, as a consequence, wide
confidence intervals are common in measuring aggregate
returns to scale. For example, Burnside, Eichenbaum, and
Rebelo (1995, p. 93), using standard measures of inputs
and output, report a standard error for economywide
returns to scale of 0.34. With this standard error and a
point estimate of returns to scale of 0.98, a 95 percent
confidence interval for returns to scale ranges from about



0.3 up to about 1.66. Baxter and King (1991) estimate
aggregate returns to scale of 1.53 with a standard error of
0.56, which yields a 95 percent confidence interval from
about 0.4 to about 2.65. These estimates show that the
value of aggregate returns is measured imprecisely. In
what follows, we will investigate why.

Our investigation exploits the fact that the constructed
technology shock is a function of returns to scale. If re-
turns to scale measurement is precise, the shocks will
differ considerably depending on the value of returns to
scale: the shock processes will look different, their serial
correlation properties will be different, and their vari-
ances will be different. If returns to scale measurement is
imprecise, however, then the shocks will be insensitive
to variations in returns to scale. In this case, for various
values of returns to scale, the shock processes will look
similar, their serial correlation properties will be similar,
and their variances will be similar. Consequently, detect-
ing changes in the shocks for various values of returns to
scale will be more difficult.

Our analysis consists of restricting the order of the
stochastic process of the technology shock, inferring the
innovations to the shock process for various values of
returns to scale, and comparing the shocks and their sto-
chastic properties. We then ask, How similar are the in-
novations to the technology shock for different values of
returns to scale?

We conduct the analysis under the widely used as-
sumption that the technology shock process (λt) is a log-
random walk with drift (γ):

(18) ln(λt) = ln(λt−1) + γ + εt.

When we definey as the natural log of output,k as
the natural log of the capital stock, andl as the natural
log of labor input, we can infer the innovation to the
shock for any returns to scale value as follows. Consider
a value for returns to scale, denoted byψ i, whereψ i =
1/(1−φi). Next construct the difference between output
growth and a weighted sum of the growth of inputs that
has been scaled byψ i:

(19) ηi
t ≡ ∆yt − ψ i[θ∆kt + (1−θ)∆lt].

With the log-random walk assumption for the tech-
nology shock, demeaningxi

t yields the innovation to the
shock:

(20) ei
t = ηi

t − η̄i
t

whereei
t = ψ iεi

t. When we denote the true value ofψ by
ψ*, we see that the relationship between the constructed
innovation to the technology shock (ei

t) and the true in-
novation (et

*) is

(21) ei
t = et

* − (ψ i−ψ*)[θ∆k̂t + (1−θ)∆ l̂t]

where∆k̂t and ∆ l̂t are the demeaned values of the per-
centage change in capital and labor, respectively.

If the value considered for returns to scale,ψ i, is near
the true value, then the implied innovationei

t should be
similar to the true innovation and should also be approx-
imately awhite noise4 process:

(22) E(ei
te

i
t−j) = 0

for all j ≠ 0.
If the considered value is not near the true value,

then, as we have already noted, the constructed innova-
tion ei

t will differ from the true innovation and, conse-
quently, will not be a white noise process:

(23) E(ei
te

i
t−j) ≠ 0

for all j ≤ s. This is becauseθ∆k̂t + (1−θ)∆ l̂t will depend
on the history of the shocks through the effect of the lev-
el of k̂t on investment and labor effort decisions.

Empirical Results
To evaluate the differences in the technology shock at
various values of returns to scale, we use annual U.S.
data from 1949 to 1998. The data, from the Bureau of
Labor Statistics (BLS) of the U.S. Department of Labor,
consist of gross domestic product (GDP), adjusted for in-
flation, minus compensation of government workers;la-
bor input,defined as private hours worked from the BLS
establishment survey; and the stock of private capital.
We need a value for the parameterθ to construct the
shock. In our model, this parameter corresponds to capi-
tal’s share of income. We use 0.35, which is the ratio of
capital income(corporate profits, depreciation, rental in-
come of persons, and net interest) to real GDP minus in-
direct business taxes and minus proprietor’s income.5

The first part of our analysis is a simple visual com-
parison of the constructed innovations to the technology
shock from various returns to scale values. The accom-
panying chart shows the constructed innovations to the
technology shock for significant decreasing returns (0.8),
constant returns (1.0), and relatively large increasing re-
turns (1.2). The most striking aspect of this chart is the
similarity of the three series. At many points, all three lie
nearly on top of each other. This similarity suggests that
the driving innovations to technology shocks are insensi-
tive to the value of returns to scale.

We turn next to formally assessing what our assump-
tion that the shock process follows a random walk with
drift can tell us about returns to scale. We start by asking
for which values of returns to scale the innovations ap-
pear to be white noise. We then calculate the autocorre-
lations of the innovations for the following values of re-
turns to scale: {0.8, 0.9, 1.0, 1.1, 1.2}. Table 1 shows the
standard deviation (σ) and the first six autocorrelations
of each innovation series. The sample autocorrelation at
lag k is defined as the sample covariance between the
innovations with displacementk divided by the product
of the standard deviations of these terms:6

(24) etet−k (T−k)

÷ {[( et)
2

T][( et−k)
2

(T−k)]} 1/2
.

The standard error for each of these autocorrelations is
0.07.

The autocorrelations in Table 1 appear to be both fair-
ly low, which we would expect if the innovations were
white noise, and quite similar. To formally test for white
noise, we use the Ljung-Box test. Under the null hypoth-
esis of white noise, this statistic is distributed as aχ2 ran-



dom variable with degrees of freedom equal to the num-
ber of autocorrelations being examined. Using 12 auto-
correlations, we fail to reject the hypothesis of white
noise for each of these series. The values for the test sta-
tistic for these five values are 7.53, 7.30, 6.94, 6.48, and
6.07. These values are all below the critical value of
21.55 for a 5 percent test. This implies that we can’t use
our assumption that the shock process is a random walk
with drift to infer the value of returns to scale.

Instrumental variables estimation takes advantage of
both a restriction on the stochastic process and an or-
thogonality assumption. However, if the innovations are
too similar at various values of returns to scale, then
finding appropriate instruments is likely to prove diffi-
cult. To shed more light on the similarities between in-
novations to the technology shock at various values of
returns to scale, we calculate the correlations between
these series for these returns to scale values. Table 2
shows these correlations. We find that all these series are
highly correlated. For example, the correlation between
the innovations for constant returns and aggregate returns
of 1.2 is 0.97. Moreover, we find a strong similarity even
for large differences in returns to scale: the correlation be-
tween the innovations at 0.8 and 1.2 is about 0.90.7

The message that emerges from these simple compar-
isons is that not only is a white noise process supported
over a wide range of returns to scale values, but the in-
novations to the technology shock are insensitive to the
value of returns to scale. These data show the problem
with measuring returns to scale precisely: the innova-
tions to the technology shocks are virtually the same
over a wide range of values. The shocks have similar
variances and autocorrelations, and all the innovations
are highly correlated. Because our model implies that the
log of any constructed technology shock process is equal
to the log of the original shock process plus the scaled
log of output, the similarity of these series suggests that
the shock and output are highly correlated. Thus, the the-
oretical difference that arises between the shock pro-
cesses from the inclusion of capital is not quantitatively
important.

From an applied perspective, the fact that the residu-
als from the production function are so insensitive to
changes in returns to scale values is bad news for mea-
suring returns to scale precisely. To understand this in-
tuitively, consider the high correlations between the
innovations shown in Table 2. If returns to scale were
unidentified, then the correlation between the innova-
tions at various values of returns to scale would be ex-
actly one, and the covariance between the instrument
and the innovation would be identical for all values of
returns to scale. Now consider what happens as the
correlation between the innovations approaches one. Al-
though returns to scale can be identified theoretically in
this case, returns will be hard to measure precisely, par-
ticularly in small samples, because if the innovations are
highly correlated at various values of returns to scale,
then the sample covariance between the instrument and
the innovation at these values can also be similar. Thus,
the covariance between the instrument and the innova-
tion can beflat; that is, the covariance changes very little
as the returns to scale value changes. This suggests that

many values of returns to scale are about equally likely,
given the data.

This flat slope of the orthogonality condition is im-
portant, because it can make ruling out all but extreme
values of returns to scale difficult. To see this formally,
consider the sample variance of the instrumental vari-
ables estimate of returns to scale. When the variance of
the innovation to the technology shock is denoted byσ2,
the variance of the estimate of returns to scale,σ2

ψ, is

(25) σ2
ψ = σ2 ∆x2

t ( zt∆xt)
2
.

The variance of the estimate depends on two compo-
nents: the variance of the innovation and the sample
variance of the inputs relative to the squared covariance
between the inputs and the instrument. To understand
clearly how the slope of the orthogonality condition re-
lates to the variance of the estimator, consider the case
for the lowest possible variance for the instrumental vari-
ables estimator of returns to scale. This is the case in
which the correlation of the instruments with the inputs
approaches one. In this case, the orthogonality condition
(16) used to estimate returns to scale becomes

(26) ∆xt(∆yt−ψ∆xt) = 0.

The variance of this estimate of returns to scale ap-
proaches the following ratio:

(27) σ2
ψ = σ2 ∆x2

t.

This simpler measure of the variance depends on just the
innovation variance and the variance of the inputs. To
see how the variance is related to the slope of the orthog-
onality condition, differentiate the orthogonality condi-
tion (26) with respect to the returns to scale value to get
an estimate of the slope:

(28) ∂ ∆xt(∆yt−ψ∆xt)/∂ψ = − ∆x2
t.

This derivative measures how the covariance changes
as the returns to scale value changes. If the slope is
flat—that is, if the covariance is insensitive to changes in
the returns to scale value—then −Σ∆x2

t is small. The key
implication of this derivative for the variance of the in-
strumental variables estimate is that the derivative is the
denominator of the variance. Thus, if the slope of the or-
thogonality condition is flat, then the slope is near zero,
and the variance of returns to scale will be large. Thus,
an important reason for imprecise measurement of re-
turns to scale is that there is insufficient variation in the
inputs. This feature of the data has negative implications
for measuring aggregate returns to scale more precisely.

Conclusion
The value of aggregate returns to scale has key implica-
tions for the sources of various shocks that lead to busi-
ness cycle fluctuations. Many economists have measured
returns to scale with instrumental variables techniques.
However, it is hard to find instruments that can be con-
sidered exogenous and that are also correlated with fac-
tor inputs. A lot of economic research has been devoted
to finding instruments that have these two properties. In
this article, we analyze a more basic problem with mea-



suring returns to scale: insufficient variation in the factor
inputs. We have shown that residuals inferred from a
standard aggregate production function over a wide
range of return to scale values are nearly identical. This
problem is independent of the characteristics of the in-
struments. Consequently, the likelihood function in this
range of values is flat, and the standard error is large.

Our conclusion is not optimistic: given observed vari-
ation in standard measures of inputs, we don’t think we
can measure aggregate returns to scale precisely. To
measure returns more precisely, our analysis indicates
that more variation is needed in the inputs. Some econo-
mists have argued that the inputs, particularly capital,
vary more over the business cycle than is observed in the
standard measures of factor services. Applications of this
idea include those of Burnside, Eichenbaum, and Rebelo
(1995), who measure returns to scale in overall manufac-
turing using alternative input measures for capital, and
Basu (1996), who measures returns to scale at the two-
digit level in manufacturing using variations in materials
in a gross output production function. While this interest-
ing work may advance our ability to measure aggregate
returns to scale precisely, measuring returns to scale ge-
nerically with alternative input measures is a tall order.
Generic measurement requires a generally accepted the-
ory of variable factor utilization and a generally accepted
alternative measure of factor services. Moreover, with
latent shocks and latent factor services, the identification
problem may be even more troublesome.

In the meantime, our knowledge of aggregate returns
to scale based on standard measures of inputs is limited.
Because distinguishing between constant returns and
increasing returns sufficiently large to generate sunspot
equilibria is difficult, our ability to determine whether
business cycle fluctuations are due primarily to technol-
ogy shocks, monetary shocks, preference shocks, or oth-
er shocks is also limited.

*The authors thank Tom Holmes, Narayana Kocherlakota, Ed Prescott, and
Warren Weber for helpful comments and Jenni Schoppers for expert editorial advice.

1Because households are identical, there is no borrowing in equilibrium in this
economy.

2The assumption that the aggregate externality depends on the level of per capita
output, rather than aggregate output, is motivated by the observation that large coun-
tries do not seem to be systematically more productive than small countries.

3Our results do not depend on the Cobb-Douglas functional form; we only re-
quire thatF be homogeneous.

4The random variableεt is a white noise process ifE(εtεt−k) = 0 for all k, k≠ 0.
5Our results are not sensitive to small changes inθ.
6Note that the autocorrelations ofei

t are the same as those forεi
t , becauseψ i

drops out. Furthermore, the correlations betweenei
t andej

t are the same as those be-
tweenεi

t andε j
t for the same reason.

7We also conducted this analysis using quarterly measures of GDP and labor in-
put and constructing a quarterly measure of the capital stock. To do this, we used the
annual measures of the capital stock compiled by the Bureau of Economic Analysis
of the U.S. Department of Commerce and the quarterly investment flows from the
national income and product accounts. Given these data, we solved for the annual de-
preciation rate of capital such that the sequence of stocks was consistent with the
quarterly flows. We used the derived depreciation rate plus the quarterly investment
series to construct a quarterly measure of the capital stock. The correlations between
the innovations based on the quarterly data were even higher than those for the annu-
al data.
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Technology Shock Innovations for Various Values of Returns to Scale;
Based on Stochastic Process for Technology Shocks and Annual U.S. Data for 1949–98

Sources of basic data: U.S. Department of Commerce, Bureau of Economic Analysis;
U.S. Department of Labor, Bureau of Labor Statistics
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Tables 1–2

Assessing Returns to Scale Using Statistical Properties
of Technology Shock Innovations

Table 1 Autocorrelations of Innovations: Low and Similar

Value at Returns to Scale of

.8 .9 1.0 1.1 1.2

Autocorrelation
r (1) –.067 –.061 –.051 –.036 –.015

r (2) –.028 –.021 –.020 –.029 –.048

r (3) –.109 –.104 –.098 –.092 –.086

r (4) –.016 –.002 .016 .038 .064

r (5) .136 .149 .161 .172 .183

r (6) –.112 –.112 –.112 –.112 –.112

Standard
Deviation (s) .016 .015 .014 .014 .013

Table 2 Correlations Between Innovations: High

Value at Returns to Scale of

Returns
to Scale .8 .9 1.0 1.1 1.2

.8 1.000 .995 .979 .949 .902

.9 .995 1.000 .994 .975 .939

1.0 .979 .994 1.000 .993 .970

1.1 .949 .975 .993 1.000 .992

1.2 .902 .939 .970 .992 1.000


